150C Causal Inference Instrumental Variables: Traditional Perspective

Jonathan Mummolo

Jonathan Mummolo

伺下 イヨト イヨト

Outline

Motivation

2 Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

∃ ► 4

Motivation

Effect of Training in JTPA

```
R Code
> d <- read.dta("jtpa.dta")</pre>
> summary(lm(earnings~training,data=d))
Call:
lm(formula = earnings ~ training, data = d)
Residuals:
  Min 10 Median 30 Max
-17396 -13587 -4955 8776 141155
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 14605.1 209.8 69.624 <2e-16 ***
training 2791.1 318.6 8.761 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 16710 on 11202 degrees of freedom
Multiple R-squared: 0.006806, Adjusted R-squared: 0.006717
F-statistic: 76.76 on 1 and 11202 DF, p-value: < 2.2e-16
```

Motivation for Instrumental Variables: Non-Compliance

Problem

- Often we cannot force subjects to take specific treatments
- Units choosing to take the treatment may differ in unobserved characteristics from units that refrain from doing so

	Not Enrolled	Enrolled	Total			
	in Training	in Training				
Assigned to Control	3,663	54	3,717			
Assigned to Training	2,683	4,804	7,487			
Total	6,346	4,858	11,204			

Example: Non-compliance in JTPA Experiment

Two Views on Instrumental Variables

Traditional Econometric Framework

- Constant treatment effects
- Linearity in case of a multivalued treatment
- Potential Outcome Model of IV
 - Heterogeneous treatment effects
 - Focus in Local Average Treatment Effect (LATE)

Outline

Motivation

Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

Recall the Omitted variable bias

- True model: $Y = \alpha_0 + \alpha_1 D + u_2$
 - *D* is the treatment variable (e.g. training)
 - *D* may be endogenous so that $Cov[D, u_2] \neq 0$
- Recall that the OLS estimator for α_1 is given by:

$$\hat{\alpha}_{1,OLS} = \frac{Cov[Y,D]}{V[D]} =$$

Recall the Omitted variable bias

- True model: $Y = \alpha_0 + \alpha_1 D + u_2$
 - *D* is the treatment variable (e.g. training)
 - *D* may be endogenous so that $Cov[D, u_2] \neq 0$
- Recall that the OLS estimator for α_1 is given by:

$$\hat{\alpha}_{1,OLS} = \frac{Cov[Y,D]}{V[D]} = \frac{Cov[\alpha_0 + \alpha_1 D + u_2, D]}{Cov[D,D]}$$

Recall the Omitted variable bias

- True model: $Y = \alpha_0 + \alpha_1 D + u_2$
 - *D* is the treatment variable (e.g. training)
 - *D* may be endogenous so that $Cov[D, u_2] \neq 0$
- Recall that the OLS estimator for α_1 is given by:

$$\hat{\alpha}_{1,OLS} = \frac{Cov[Y,D]}{V[D]} = \frac{Cov[\alpha_0 + \alpha_1 D + u_2, D]}{Cov[D,D]}$$
$$\hat{\alpha}_{1,OLS} = \frac{\alpha_1 Cov[D,D] + Cov[D,u_2]}{Cov[D,D]}$$

Recall the Omitted variable bias

- True model: $Y = \alpha_0 + \alpha_1 D + u_2$
 - *D* is the treatment variable (e.g. training)
 - *D* may be endogenous so that $Cov[D, u_2] \neq 0$
- Recall that the OLS estimator for α_1 is given by:

$$\hat{\alpha}_{1,OLS} = \frac{Cov[Y,D]}{V[D]} = \frac{Cov[\alpha_0 + \alpha_1 D + u_2, D]}{Cov[D,D]}$$
$$\hat{\alpha}_{1,OLS} = \frac{\alpha_1 Cov[D,D] + Cov[D,u_2]}{Cov[D,D]}$$
$$\hat{\alpha}_{1,OLS} = \alpha_1 + \frac{Cov[D,u_2]}{Cov[D,D]}$$

Recall the Omitted variable bias

- True model: $Y = \alpha_0 + \alpha_1 D + u_2$
 - D is the treatment variable (e.g. training)
 - *D* may be endogenous so that $Cov[D, u_2] \neq 0$
- Recall that the OLS estimator for α_1 is given by:

$$\begin{aligned} \hat{\alpha}_{1,OLS} &= \frac{Cov[Y,D]}{V[D]} = \frac{Cov[\alpha_0 + \alpha_1 D + u_2, D]}{Cov[D,D]} \\ \hat{\alpha}_{1,OLS} &= \frac{\alpha_1 Cov[D,D] + Cov[D,u_2]}{Cov[D,D]} \\ \hat{\alpha}_{1,OLS} &= \alpha_1 + \frac{Cov[D,u_2]}{Cov[D,D]} \\ E[\hat{\alpha}_{1,OLS}] &= \alpha_1 + E[\frac{Cov[D,u_2]}{Cov[D,D]}] \end{aligned}$$

so bias depends on correlation between u and D

IV Assumptions

Outline

Motivation

Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

IV Assumptions

Instrumental Variable Estimator Assumptions

Imagine we have two equations:

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
 - Z is our instrumental variable (e.g. randomized encouragement)
 - π_1 is effect of Z on D

A valid instrument needs to satisfy three assumptions:

- $1 = \pi_1 \neq 0$ so Z affects the endogenous treatment D (called first stage or relevance)
- 2 is as good as randomly assigned so $Cov[u_1, Z] = 0$
- S z satisfies the exclusion restriction, i.e. Z has no effect on Y other than through D. In other words, Z has no independent effect on Y and that is why it does not appear in the second stage equation and we assume $Cov[u_2, Z] = 0$

Which of these is testable?

イロト 不得 トイヨト イヨト

IV Assumptions

Instrumental Variable Estimator Assumptions

Jonathan Mummolo

∃ ► < ∃ ►</p>

IV Assumptions

Instrumental Variable Estimator Assumptions

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

Based on these IV assumptions we can identify three effects:

- The first stage effect: Effect of Z on D.
- Provide the second s
- The instrumental variable treatment effect: Effect of D on Y, using only the exogenous variation in D that is induced by Z.

Outline

Motivation

2 Traditional Instrumental Variable Framework

IV Assumptions

First Stage Effect

- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

First Stage Effect

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

First stage effect: Z on D

$$\hat{\pi}_1 = \frac{Cov[D,Z]}{V[Z]}$$

э

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

First stage effect: Z on D

$$\hat{\pi}_1 = \frac{Cov[D,Z]}{V[Z]} = \frac{Cov[\pi_0 + \pi_1 Z + u_1, Z]}{Cov[Z,Z]}$$

э

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

First stage effect: Z on D

$$\hat{\pi}_{1} = \frac{Cov[D, Z]}{V[Z]} = \frac{Cov[\pi_{0} + \pi_{1}Z + u_{1}, Z]}{Cov[Z, Z]}$$
$$\hat{\pi}_{1} = \frac{\pi_{1}Cov[Z, Z] + Cov[Z, u_{1}]}{Cov[Z, Z]}$$

э

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

First stage effect: Z on D

$$\hat{\pi}_{1} = \frac{Cov[D,Z]}{V[Z]} = \frac{Cov[\pi_{0} + \pi_{1}Z + u_{1},Z]}{Cov[Z,Z]}$$

$$\hat{\pi}_{1} = \frac{\pi_{1}Cov[Z,Z] + Cov[Z,u_{1}]}{Cov[Z,Z]}$$

$$\hat{\pi}_{1} = \pi_{1} + \frac{Cov[Z,u_{1}]}{Cov[Z,Z]}$$

э

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

First stage effect: Z on D

$$\begin{aligned} \hat{\pi}_{1} &= \frac{Cov[D,Z]}{V[Z]} = \frac{Cov[\pi_{0} + \pi_{1}Z + u_{1},Z]}{Cov[Z,Z]} \\ \hat{\pi}_{1} &= \frac{\pi_{1}Cov[Z,Z] + Cov[Z,u_{1}]}{Cov[Z,Z]} \\ \hat{\pi}_{1} &= \pi_{1} + \frac{Cov[Z,u_{1}]}{Cov[Z,Z]} \\ E[\hat{\pi}_{1}] &= \pi_{1} + E[\frac{Cov[Z,u_{1}]}{Cov[Z,Z]}] \end{aligned}$$

э

- Second Stage: $Y = \alpha_0 + \alpha_1 D + u_2$
- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

First stage effect: Z on D

$$\hat{\pi}_{1} = \frac{Cov[D, Z]}{V[Z]} = \frac{Cov[\pi_{0} + \pi_{1}Z + u_{1}, Z]}{Cov[Z, Z]}$$

$$\hat{\pi}_{1} = \frac{\pi_{1}Cov[Z, Z] + Cov[Z, u_{1}]}{Cov[Z, Z]}$$

$$\hat{\pi}_{1} = \pi_{1} + \frac{Cov[Z, u_{1}]}{Cov[Z, Z]}$$

$$E[\hat{\pi}_{1}] = \pi_{1} + E[\frac{Cov[Z, u_{1}]}{Cov[Z, Z]}] = \pi_{1}$$

 $\hat{\pi}_1$ is consistent since $Cov[u_1, Z] = 0$

First Stage Effect in JTPA

irst stage effect: Z on D: $\hat{\pi}_1 = \frac{Cov[D,Z]}{V[Z]}$	
<pre>cov(d[,c("earnings","training","assignmt")])</pre>	
earnings training assignmt earnings 2.811338e+08 685.5254685 257.0625061	
raining 6.855255e+02 0.2456123 0.1390407	
assignmt 2.570625e+02 0.1390407 0.221713	
R Code	
0.139040770.2217139	

æ

First Stage Effect in JTPA

```
R Code ____
> summary(lm(training~assignmt,data=d))
Call:
lm(formula = training ~ assignmt, data = d)
Residuals:
          10 Median 30
    Min
                                      Max
-0.64165 -0.01453 -0.01453 0.35835 0.98547
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.014528 0.006529 2.225 0.0261 *
assignmt 0.627118 0.007987 78.522 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.398 on 11202 degrees of freedom
Multiple R-squared: 0.355, Adjusted R-squared: 0.355
F-statistic: 6166 on 1 and 11202 DF. p-value: < 2.2e-1
```

Outline

Motivation

Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect

Reduced Form/Intent-to-treat Effect

- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

• First Stage:
$$D = \pi_0 + \pi_1 Z + u_1$$

• IV assumptions:
$$Cov[u_1, Z] = 0$$
, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

Reduced Form/Intent-to-treat Effect: *Z* on *Y*: Plug first into second stage:

$$Y = \alpha_0 + \alpha_1(\pi_0 + \pi_1 Z + u_1) + u_2$$

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

• First Stage:
$$D = \pi_0 + \pi_1 Z + u_1$$

• IV assumptions:
$$Cov[u_1, Z] = 0$$
, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

Reduced Form/Intent-to-treat Effect: *Z* on *Y*: Plug first into second stage:

$$Y = \alpha_0 + \alpha_1(\pi_0 + \pi_1 Z + u_1) + u_2$$

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1) Z + (\alpha_1 u_1 + u_2)$$

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

• First Stage:
$$D = \pi_0 + \pi_1 Z + u_1$$

• IV assumptions:
$$Cov[u_1, Z] = 0$$
, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

Reduced Form/Intent-to-treat Effect: *Z* on *Y*: Plug first into second stage:

$$Y = \alpha_0 + \alpha_1(\pi_0 + \pi_1 Z + u_1) + u_2$$

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1) Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$.

э

イロト 不得 トイヨト イヨト

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

• First Stage:
$$D = \pi_0 + \pi_1 Z + u_1$$

• IV assumptions:
$$Cov[u_1, Z] = 0$$
, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

Reduced Form/Intent-to-treat Effect: *Z* on *Y*: Plug first into second stage:

$$Y = \alpha_0 + \alpha_1(\pi_0 + \pi_1 Z + u_1) + u_2$$

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1) Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Note that

$$\hat{\gamma}_1 = \frac{Cov[Y, Z]}{Cov[Z, Z]} = \frac{Cov[\gamma_0 + \gamma_1 Z + u_3, Z]}{Cov[Z, Z]}$$

э

イロト 不得 トイヨト イヨト

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

First Stage:
$$D = \pi_0 + \pi_1 Z + u_1$$

• IV assumptions:
$$Cov[u_1, Z] = 0$$
, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

Reduced Form/Intent-to-treat Effect: *Z* on *Y*: Plug first into second stage:

$$Y = \alpha_0 + \alpha_1(\pi_0 + \pi_1 Z + u_1) + u_2$$

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1) Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Note that

$$\hat{\gamma}_{1} = \frac{Cov[Y,Z]}{Cov[Z,Z]} = \frac{Cov[\gamma_{0} + \gamma_{1}Z + u_{3},Z]}{Cov[Z,Z]}$$
$$E[\hat{\gamma}_{1}] = \gamma_{1} + E[\frac{Cov[Z,u_{3}]}{Cov[Z,Z]}] = \gamma_{1}$$

 $\hat{\gamma}_1$ is consistent since $Cov[u_1, Z] = 0$ and $Cov[u_2, Z] = 0$ implies $Cov[u_3, Z] = 0$ $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$

```
R Code ____
> summary(lm(earnings~assignmt,data=d))
Call:
lm(formula = earnings ~ assignmt, data = d)
Residuals:
  Min 1Q Median 3Q Max
-16200 -13803 -4817 8950 139560
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15040.5 274.9 54.716 < 2e-16 ***
assignmt 1159.4 336.3 3.448 0.000567 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 16760 on 11202 degrees of freedom
Multiple R-squared: 0.00106, Adjusted R-squared: 0.000971
F-statistic: 11.89 on 1 and 11202 DF. p-value: 0.000566
```

Outline

Motivation

Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Given this, we can identify α_1 :

 $\alpha_1 = \frac{\gamma_1}{\pi_1}$

э.

イロト 不得 トイヨト イヨト

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Given this, we can identify α_1 :

$$\alpha_1 = \frac{\gamma_1}{\pi_1} =$$

э.

イロト 不得 トイヨト イヨト

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Given this, we can identify α_1 :

$$\alpha_1 \quad = \quad \frac{\gamma_1}{\pi_1} = \frac{\text{Effect of Z on Y}}{\text{Effect of Z on D}} = \frac{Cov[Y, Z]/Cov[Z, Z]}{Cov[D, Z]/Cov[Z, Z]} = \frac{Cov[Y, Z]}{Cov[D, Z]}$$

イロト 人間 トイヨト イヨト

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Given this, we can identify α_1 :

$$\begin{aligned} \alpha_1 &= \frac{\gamma_1}{\pi_1} = \frac{\text{Effect of } Z \text{ on } Y}{\text{Effect of } Z \text{ on } D} = \frac{Cov[Y, Z]/Cov[Z, Z]}{Cov[D, Z]/Cov[Z, Z]} = \frac{Cov[Y, Z]}{Cov[D, Z]} \\ \hat{\alpha}_1 &= \frac{Cov[\alpha_0 + \alpha_1 D + u_2, Z]}{Cov[D, Z]} \end{aligned}$$

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Given this, we can identify α_1 :

$$\begin{aligned} \alpha_1 &= \frac{\gamma_1}{\pi_1} = \frac{\text{Effect of } Z \text{ on } Y}{\text{Effect of } Z \text{ on } D} = \frac{Cov[Y, Z]/Cov[Z, Z]}{Cov[D, Z]/Cov[Z, Z]} = \frac{Cov[Y, Z]}{Cov[D, Z]} \\ \hat{\alpha}_1 &= \frac{Cov[\alpha_0 + \alpha_1 D + u_2, Z]}{Cov[D, Z]} = \frac{\alpha_1 Cov[D, Z] + Cov[u_2, Z]}{Cov[D, Z]} = \end{aligned}$$

Jonathan Mummolo

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Given this, we can identify α_1 :

$$\begin{aligned} \alpha_1 &= \frac{\gamma_1}{\pi_1} = \frac{\text{Effect of } Z \text{ on } Y}{\text{Effect of } Z \text{ on } D} = \frac{Cov[Y, Z]/Cov[Z, Z]}{Cov[D, Z]/Cov[Z, Z]} = \frac{Cov[Y, Z]}{Cov[D, Z]} \\ \hat{\alpha}_1 &= \frac{Cov[\alpha_0 + \alpha_1 D + u_2, Z]}{Cov[D, Z]} = \frac{\alpha_1 Cov[D, Z] + Cov[u_2, Z]}{Cov[D, Z]} = \alpha_1 + \frac{Cov[u_2, Z]}{Cov[D, Z]} \\ E[\hat{\alpha}_1] &= \alpha_1 + E[\frac{Cov[u_2, Z]}{Cov[D, Z]}] \end{aligned}$$

Jonathan Mummolo

• Second Stage:
$$Y = \alpha_0 + \alpha_1 D + u_2$$

- First Stage: $D = \pi_0 + \pi_1 Z + u_1$
- IV assumptions: $Cov[u_1, Z] = 0$, $\pi_1 \neq 0$, and $Cov[u_2, Z] = 0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$Y = (\alpha_0 + \alpha_1 \pi_0) + (\alpha_1 \pi_1)Z + (\alpha_1 u_1 + u_2)$$

$$Y = \gamma_0 + \gamma_1 Z + u_3$$

where $\gamma_0 = \alpha_0 + \alpha_1 \pi_0$, $\gamma_1 = \alpha_1 \pi_1$, and $u_3 = \alpha_1 u_1 + u_2$. Given this, we can identify α_1 :

$$\begin{aligned} \alpha_1 &= \frac{\gamma_1}{\pi_1} = \frac{\text{Effect of } Z \text{ on } Y}{\text{Effect of } Z \text{ on } D} = \frac{Cov[Y, Z]/Cov[Z, Z]}{Cov[D, Z]/Cov[Z, Z]} = \frac{Cov[Y, Z]}{Cov[D, Z]} \\ \hat{\alpha}_1 &= \frac{Cov[\alpha_0 + \alpha_1 D + u_2, Z]}{Cov[D, Z]} = \frac{\alpha_1 Cov[D, Z] + Cov[u_2, Z]}{Cov[D, Z]} = \alpha_1 + \frac{Cov[u_2, Z]}{Cov[D, Z]} \\ [\hat{\alpha}_1] &= \alpha_1 + E[\frac{Cov[u_2, Z]}{Cov[D, Z]}] = \alpha_1 \end{aligned}$$

 $\hat{\alpha}_1$ is consistent if $Cov[u_2, Z] = 0$. What if $\pi_1 = 0$?

Е

イロト 不得 トイヨト イヨト

Instrumental Variable Effect:
$$\alpha_1 = \frac{\text{Effect of } Z \text{ on } Y}{\text{Effect of } Z \text{ on } D} = \frac{\text{Cov}[Y, Z]}{\text{Cov}[D, Z]}$$

R Code				
<pre>> cov(d[,c("earnings","training","assignmt")])</pre>				
earnings training assignmt				
earnings 2.811338e+08 685.5254685 257.0625061				
training 6.855255e+02 0.2456123 0.1390407				
assignmt 2.570625e+02 0.1390407 0.221713				
R Code				
> 257.0625061/0.1390407				
F17 1848, 829				

The instrumental variable estimator:

$$\alpha_{1} = \frac{\gamma_{1}}{\pi_{1}} = \frac{Cov[Y, Z]}{Cov[D, Z]}$$

is numerically equivalent to the following two step procedure:

① Fit first stage and obtain fitted values $\hat{D} = \hat{\pi}_0 + \hat{\pi}_1 Z$

Plug into second stage:

$$Y = \alpha_0 + \alpha_1 \hat{D} + u_2 Y = \alpha_0 + \alpha_1 (\hat{\pi}_0 + \hat{\pi}_1 Z) + u_2 Y = (\alpha_0 + \alpha_1 \hat{\pi}_0) + \alpha_1 (\hat{\pi}_1 Z) + u_2$$

- α₁ is solely identified based on variation in D that comes from Z
- Point estimates from second regression are equivalent to IV estimator, the standard errors are not quite correct since they ignore the estimation uncertainty in π̂₀ and π̂₁.

```
R Code
> training_hat <- lm(training~assignmt,data=d)$fitted</pre>
> summary(lm(earnings~training_hat,data=d))
Call:
lm(formula = earnings ~ training_hat, data = d)
Residuals:
  Min 10 Median 30 Max
-16200 -13803 -4817 8950 139560
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 15013.6 281.3 53.375 < 2e-16 ***
training_hat 1848.8 536.2 3.448 0.000567 ***
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 16760 on 11202 degrees of freedom
Multiple R-squared: 0.00106, Adjusted R-squared: 0.000971
F-statistic: 11.89 on 1 and 11202 DF, p-value: 0.0005669
```

```
R Code _____
> librarv(AER)
> summary(ivreg(earnings ~ training | assignmt.data = d))
Call:
ivreg(formula = earnings ~ training | assignmt, data = d)
Residuals:
  Min
         10 Median 30 Max
-16862 -13716 -4943 8834 140746
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15013.6 280.6 53.508 < 2e-16 ***
training 1848.8 534.9 3.457 0.000549 ***
Residual standard error: 16720 on 11202 degrees of freedom
Multiple R-Squared: 0.00603, Adjusted R-squared: 0.005941
Wald test: 11.95 on 1 and 11202 DF, p-value: 0.0005491
```

Outline

Motivation

Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

IV Estimator: Multivariate Case

- Let $\mathbf{X} = [1, X_1, ..., X_K, D]$ and $\mathbf{Z} = [1, X_1, ..., X_K, Z]$.
- Second Stage: $Y = \mathbf{X}\alpha + u_2$ with $\alpha = [\alpha_0, \alpha_1, ..., \alpha_K, \alpha_D]$
- First Stage: $D = \mathbf{Z}\pi + u_1$ with with $\pi = [\pi_0, \pi_1, ..., \pi_K, \pi_Z]$
- Identification: $Cov[\mathbf{Z}, u_1] = 0$, $Cov[\mathbf{Z}, u_2] = 0$, and $\pi_Z \neq 0$ (non-zero partial effect of Z on D)

The multivariate IV estimator is consistent:

Ε

$$\begin{aligned} \hat{\alpha}_{IV} &= (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'Y\\ \hat{\alpha}_{IV} &= (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'(\mathbf{X}\alpha + u_2)\\ \hat{\alpha}_{IV} &= (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{X}\alpha + (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'u_2\\ \hat{\alpha}_{IV} &= \alpha + (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'u_2\\ [\hat{\alpha}_{IV}] &= \alpha + E[(\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'u_2] = \alpha \end{aligned}$$

IV Effect: Multivariate Case

2SLS Estimator: Multivariate Case

First stage regression to get fitted values

$$D = \mathbf{Z}\pi + u_1 \Rightarrow \hat{\pi} = (\mathbf{Z}\mathbf{Z}')^{-1}\mathbf{Z}'D$$
$$\hat{D} = \mathbf{Z}\hat{\pi} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'D = \mathbf{P}_z D$$

IV Effect: Multivariate Case

2SLS Estimator: Multivariate Case

First stage regression to get fitted values

$$D = \mathbf{Z}\pi + u_1 \Rightarrow \hat{\pi} = (\mathbf{Z}\mathbf{Z}')^{-1}\mathbf{Z}'D$$
$$\hat{D} = \mathbf{Z}\hat{\pi} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'D = \mathbf{P}_zD$$

2 Regress fitted values on Y

$$Y = \hat{D}\alpha_{2SLS} + u_3$$

We can show that:

$$\begin{aligned} \alpha_{2SLS} &= (\hat{D}'\hat{D})^{-1}\hat{D}'Y \\ &= (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'Y = \alpha_{IV} \end{aligned}$$

伺下 イヨト イヨト

R Code > summary(ivreg(earnings ~ training + prevearn + sex + age + married prevearn + sex + age + married +assignmt,data = d)) + Call: ivreg(formula = earnings ~ training + prevearn + sex + age + married | prevearn + sex + age + married + assignmt, data = d) Residuals: Min 10 Median 30 Max -58052 -10916 -4050 8316 117239 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.162e+04 6.042e+02 19.238 < 2e-16 *** training 1.927e+03 4.998e+02 3.855 0.000116 *** prevearn 1.270e+00 3.885e-02 32.675 < 2e-16 *** 3.760e+03 3.053e+02 12.316 < 2e-16 *** sex age -9.592e+01 1.543e+01 -6.215 5.3e-10 *** married 2.707e+03 3.488e+02 7.760 9.2e-15 *** Residual standard error: 15600 on 11198 degrees of freedom Multiple R-Squared: 0.1348, Adjusted R-squared: 0.1344 Wald test: 335 on 5 and 11198 DF, p-value: < 2.2e-16

Multiple Instruments

- 2SLS estimator can be used to combine multiple instruments for the same endogeneous variable. Strong assumptions needed:
 - · Each instrument captures the same effect
 - Exogeneity holds for all instruments

$$D = X\beta + Z_1\pi_1 + Z_2\pi_2 + \dots + Z_k\pi_k + u_1$$

where $Cov(Z_j, u_1) = 0$ and $Cov(Z_j, u_2) = 0$ for all j = 1, ..., k.

• Need at least as many instruments as endogenous regressors:

- Let *k* be number of endogenous regressors and *m* number of instruments
- Exactly or just identified case: m = k
- Overidentified case: *m* > *k*
- Underidentified case: *m* < *k*

Outline

Motivation

2 Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

3 Problems with IV

- Weak Instruments
- Failure of Exogeneity

Problems with IV

Judging the Credibility of IV Estimates

• The probability limit of the IV estimator is given by:

$$plim \hat{\alpha}_{D,IV} = \alpha_D + \frac{Corr(Z, u_2)}{Corr(Z, D)} \frac{\sigma^{u_2}}{\sigma^D}$$

so to obtain consistent estimates the instrument Z must be:

- Relevant: $Cov(Z, D) \neq 0$ (testable)
 - If *Cov*(*Z*, *D*) is small, the instrument is weak. We get consistency in asymptotia, but in small (finite) samples we can get strong bias even if instrument is perfectly exogenous
- Exogenous: $Cov(Z, u_2) = 0$ (untestable)
 - If Z has an independent effect on Y other than through D we have $Cov(Z, u_2) \neq 0$ and estimates are inconsistent
 - Even small violations can lead to significant large sample bias unless instruments are strong
- Failure of either condition is a problem! But both conditions can be hard to satisfy at the same time. There often is a tradeofference and the same time.

Instrumental Variable Examples

Study	Outcome	Treatment	Instrument
Angrist and Evans	Earnings	More than 2	Multiple Second
(1998)		Children	Birth (Twins)
Angrist and Evans	Earnings	More than 2	First Two Children
(1998)		Children	are Same Sex
Levitt (1997)	Crime Rates	Number of	Mayoral Elections
		Policemen	
Angrist and Krueger	Earnings	Years of Schooling	Quarter of Birth
(1991)			
Angrist (1990)	Earnings	Veteran Status	Vietnam Draft
			Lottery
Miguel, Satyanath	Civil War Onset	GDP per capita	Lagged Rainfall
and Sergenti (2004)			
Acemoglu, Johnson	Economic	Current Institutions	Settler Mortality in
and Robinson (2001)	performance		Colonial Times
Cleary and Barro	Religiosity	GDP per capita	Distance from
(2006)			Equator

1

Outline

Motivation

2 Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

3

- Weak Instruments
- Failure of Exogeneity

 In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous

→ Ξ → < Ξ</p>

- T

- In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous
- Because of sampling variability in first stage estimation of fitted values, some part of the correlation between errors in first and second stage seeps into 2SLS estimates (correlation disappears in large samples)

- In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous
- Because of sampling variability in first stage estimation of fitted values, some part of the correlation between errors in first and second stage seeps into 2SLS estimates (correlation disappears in large samples)
- Finite sample bias can be considerable (e.g., 20 30%), even when the sample size is over 100,000 if the instrument is weak

- In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous
- Because of sampling variability in first stage estimation of fitted values, some part of the correlation between errors in first and second stage seeps into 2SLS estimates (correlation disappears in large samples)
- Finite sample bias can be considerable (e.g., 20 30%), even when the sample size is over 100,000 if the instrument is weak
- Relative bias of $\alpha_{D,IV}$ versus $\alpha_{D,OLS}$ is approximately 1/F where F is the F-statistic for testing H_0 : $\pi_Z = 0$, i.e. partial effect of Z on D is zero (or against joint zero for multiple instruments)

< ロト < 同ト < ヨト < ヨト

Testing For Relevance

イロト 人間 トイヨト イヨト

- Adding instruments increases the relevance of the instrument set (increases the first stage F)
- But too many instruments increases small sample bias (compared to few instruments) and also call into doubt the exclusion restrictions
- Best to have single, strong instrument
- There are more complex competitors to 2SLS:
 - Limited Information Maximum Likelihood (LIML) estimation
 - Jackknife instrumental variables
 - Imbens and Rosenbaum (2005) robust IV.
- Small sample studies suggest that LIML and robust IV may be superior to 2SLS in small samples (but remains open area of research)

Outline

Motivation

2 Traditional Instrumental Variable Framework

- IV Assumptions
- First Stage Effect
- Reduced Form/Intent-to-treat Effect
- IV Effect: Wald Estimator and 2SLS
- IV Effect: Multivariate Case

Problems with IV

- Weak Instruments
- Failure of Exogeneity

Failure of Exogeneity

Recall the probability limit:

$$plim \hat{\alpha}_{D,IV} = \alpha_D + \frac{Corr(Z, u_2)}{Corr(Z, D)} \frac{\sigma_{u_2}}{\sigma_D}$$

- In general we get inconsistent estimates if Corr(Z, u₂) ≠ 0. This large sample bias can often be considerable but is hard to quantify precisely because it depends on unobservables
- If the instrument is stronger, large sample bias can be attenuated, but often magnitude of Corr(Z, u₂) dominates
- The best we can often do is often to be skeptical and to make sure exogeneity is highly plausible in the setting to which we apply IV
- Sensitivity analysis:
 - Is the instrument plausibly exogenous or can it be easily predicted from covariates?
 - Formal sensitivity tests
 - E.g. Stata code from "Plausibly Exogenous" (Hanson et. al, 2009)

R code from Wand (2002)

Failure of Exogeneity

 Does a randomly assigned instrument Z always satisfy Cov(Z, u₂) = 0?

Failure of Exogeneity

- Does a randomly assigned instrument Z always satisfy Cov(Z, u₂) = 0?
- No! Encouragement may still have independent effect on outcome other than through the treatment
- When designing an encouragement experiment we need to be careful to design encouragements so that they are relevant, but also narrowly targeted to only create variation in treatment intake
- SUTVA may be a concern as well

Conclusion

- IV works only under very specific circumstances (e.g. well designed encouragement design experiments)
- Often, it will be difficult to find instruments that are both relevant (strong enough) and exogenous
- Violations of assumptions can lead to large biases and estimation theory is complicated
- So far, we have assumed constant treatment effects α_D which seems unrealistic in most settings. Often an instrument affects only a subpopulation of interest and we have little information about treatment effects for other units that may not be affected by the instrument at all.
- Next we'll discuss modern IV with heterogeneous potential outcomes