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Motivation

Conditional Effects

Often we are interested not only in the Average Treatment Effect
(ATE) but in the Conditional Average Treatment Effect (CATE)

Effect of some treatment holding a covariate at a fixed value
E [Y1|X = x ]− E [Y0|X = x ] = E [Y1 − Y0|X = x ]
We might further be interested in knowing whether two CATEs
differ from one another:
(E [Yi1 − Yi0|X = xj ])− (E [Yi1 − Yi0|X = xk ]) where j 6= k
“Effect heterogeneity”, “Heterogeneous treatment effects,”
“subgroup effects,” “interaction effects”
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Motivation

(Hypothetical) Examples

The magnitude—and sometimes, the direction—of the effect of some
treatment depends on an additional factor.

The effect of medicine X on health is positive for those below age
35, but negative for those above age 35
Seeing negative political ads causes old people to vote, young
people to stay home
Police body cameras cause a decline in the use of force by
officers in large police departments, but have no effect for officers
in small police departments
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Motivation

Linear Interaction Model

Definition (Linear Interaction Model)
Workhorse model in social science for estimating the CATE: the linear
interaction model

Yi = α+ β1Di + β2Xi + β3Di ∗ Xi + εi

where Di is the treatment and Xi is the conditioning variable
(sometimes called a moderator).

How to interpret correctly?

Long way: set Di and Xi to given values, recover parameters under
different scenarios.
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(sometimes called a moderator).

Example: What is (E [Yi |Xi = 1,Di = 1])− (E [Yi |Xi = 1,Di = 0])?

(E [Yi |Xi = 1,Di = 1]) = α+ β1 ∗ 1 + β2 ∗ 1 + β3 ∗ 1 ∗ 1 (mean-zero error
term drops out) = α+ β1 + β2 + β3

(E [Yi |Xi = 1,Di = 0]) = α+ β1 ∗ 0 + β2 ∗ 1 + β3 ∗ 0 ∗ 1 = α+ β2

So (E [Yi |Xi = 1,Di = 1])− (E [Yi |Xi = 1,Di = 0]) =
(α+ β1 + β2 + β3)− (α+ β2) = β1 + β3

= Treatment effect for those units with X = 1 (where X could be a
dummy for gender, party ID, old/young, etc.)
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Workhorse model in social science for estimating the CATE: the linear
interaction model

Yi = α+ β1Di + β2Xi + β3Di ∗ Xi + εi

where Di is the treatment and Xi is the conditioning variable
(sometimes called a moderator).

Therefore: What is [(E [Yi |Xi = 1,Di = 1])− (E [Yi |Xi = 1,Di =
0])]− [(E [Yi |Xi = 0,Di = 1])− (E [Yi |Xi = 0,Di = 0])]?

Difference between the treatment effect for those units with X = 1 and
those units with X = 0
(β1 + β3)− (β1) = β3

β3 represents the difference in treatment effects between the two groups
(i.e. the difference-in-differences)
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Motivation

Linear Interaction Model

Definition (Linear Interaction Model)

Yi = α+ β1Di + β2Xi + β3Di ∗ Xi + εi

Shorter way: calculus

The marginal effect of D is just the first derivative of this function with
respect to D = ∂Yi

∂Di
= the rate at which Y changes given a one-unit

increase in D holding all else constant
Remember “rise over run”? Change in Y given a change in X . Slope of
X . All descriptions of first derivatives.
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Motivation

Review: Rules of Derivatives

Say we are taking the derivative of some function f with respect to
some variable X . Consider also some constants a, b and c.

Constant: ∂f
∂X (c) = 0

Multiplication by a constant: ∂f
∂X (cX ) = c

Addition: ∂f
∂X (aX + bX ) = a + b

Subtraction: ∂f
∂X (aX − bX ) = a− b

Power Rule: ∂f
∂X (aX n) = n ∗ a ∗ X n−1

Suppose n = 1. Then ∂f
∂X (aX n) = (1 ∗ aX 1−0) = 1 ∗ a ∗ 1 = a

Multiple Variables ∂f
∂X (aX + bY ) = a + 0 = a

(Anything without X gets treated as a constant) What is ∂f
∂Y (aX + bY )?

0 + b = b
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Motivation

Linear Interaction Model

Definition (Linear Interaction Model)

Yi = α+ β1Di + β2Xi + β3Di ∗ Xi + εi

∂Yi
∂Di

=

∂
∂Di

(α+β1Di +β2Xi +β3Di ∗Xi + εi) = 0+β1 +0+β3Xi = β1 +β3Xi
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Now that we have the expression for the marginal effect, β1 + β3Xi , we
can plug in values of Di and Xi to obtain the marginal effect of our
treatment under different scenarios, as well as differences between
various effects.

Key insight here: the marginal effect of Di now depends on the value
of Xi

So long as β3 6= 0, the effect of Di will differ depending on the value of Xi

Multiplicative interaction model allows for heterogeneous effects
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Standard Errors on Marginal Effects

How to Obtain Standard Errors for Marginal Effects

Definition (Linear Interaction Model)

Yi = α+ β1Di + β2Xi + β3Di ∗ Xi + εi

Effect of D when X = 0:

β1

Difference in effect of D when X = 1 vs. when X = 0: β3

Standard OLS routines report standard errors for our estimates of
these coefficients, β̂1 and β̂3

How do we find the standard error of the marginal effect of D
when X is 1, which is β̂1 + β̂3?
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Standard Errors on Marginal Effects

Review: Rules of Variance

Given some random variables X and Y and some constants a and b:

Definition (The Variance Operator)

Var [aX + bY ] = a2Var [X ] + b2Var [Y ] + 2ab ∗ cov [X ,Y ]

SE [aX + bY ] =
√

a2Var [X ] + b2Var [Y ] + 2ab ∗ cov [X ,Y ]

So, in our interaction model, what is SE [β̂1 + β̂3X ]?
What are the random variables here? β̂1 + β̂3

What are the constants? X
Remember, we are estimating the uncertainty in our estimates of
coefficients (which will vary from sample to sample due to random
error) in a scenario where we are setting D and X to constant
values (i.e. E [Y |D = 1,X = 1])
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If X = 1, then

SE [β̂1 + β̂3X ] =
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We can compute this in-sample using estimates of the necessary
variances and covariances.

Mummolo (Stanford) 14 / 43



Standard Errors on Marginal Effects

Review: Rules of Variance

Given some random variables X and Y and some constants a and b:

Definition (The Variance Operator)

Var [aX + bY ] = a2Var [X ] + b2Var [Y ] + 2ab ∗ cov [X ,Y ]

SE [aX + bY ] =
√

a2Var [X ] + b2Var [Y ] + 2ab ∗ cov [X ,Y ]

So, in our interaction model, what is SE [β̂1 + β̂3X ]?√
12Var [β̂1] + X 2Var [β̂3] + 2 ∗ 1 ∗ X ∗ cov [β̂1, β̂3]

If X = 1, then

SE [β̂1 + β̂3X ] =
√

Var [β̂1] + Var [β̂3] + 2 ∗ cov [β̂1, β̂3]

We can compute this in-sample using estimates of the necessary
variances and covariances.

Mummolo (Stanford) 14 / 43



Standard Errors on Marginal Effects

Review: Rules of Variance

Given some random variables X and Y and some constants a and b:

Definition (The Variance Operator)

Var [aX + bY ] = a2Var [X ] + b2Var [Y ] + 2ab ∗ cov [X ,Y ]

SE [aX + bY ] =
√

a2Var [X ] + b2Var [Y ] + 2ab ∗ cov [X ,Y ]

So, in our interaction model, what is SE [β̂1 + β̂3X ]?√
12Var [β̂1] + X 2Var [β̂3] + 2 ∗ 1 ∗ X ∗ cov [β̂1, β̂3]

If X = 1, then

SE [β̂1 + β̂3X ] =
√

Var [β̂1] + Var [β̂3] + 2 ∗ cov [β̂1, β̂3]

We can compute this in-sample using estimates of the necessary
variances and covariances.

Mummolo (Stanford) 14 / 43



Standard Errors on Marginal Effects

Review: Variance-Covariance Matrix of Coefficients

Definition (Variance of Coefficients)

Var [β̂OLS] =


Var [β̂1] cov [β̂1, β̂2] ... cov [β̂1, β̂k ]

cov [β̂2, β̂1] Var [β̂2] ... cov [β̂2, β̂k ]
...

...
. . .

...
cov [β̂k , β̂1] cov [β̂k , β̂2] ... Var [β̂k ]


Variances on the diag, covariances on the off-diag

Standard OLS routines estimate this matrix, and we can access it
to recover ŜE [β̂1 + β̂3X ]
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Example

Example: Gerber et al. (2015)

“Can Incarcerated Felons Be (Re)integrated into the Political System?
Results from a Field Experiment”. Ex-cons sent letters encouraging
them to register/vote.

Registeri = α+ β1treati + β2Voted2008i + β3treati ∗ Voted2008i + εi

> summary(lm(reg ˜ treat_combined+v08+ treat_combined*v08, data=d))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.054616 0.005579 9.789 < 2e-16 ***
treat_combined 0.019151 0.007911 2.421 0.015531 *
v08 0.082999 0.024939 3.328 0.000882 ***
treat_combined:v08 0.066449 0.035049 1.896 0.058040 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 1

Residual standard error: 0.2538 on 4333 degrees of freedom
(2104 observations deleted due to missingness)

Multiple R-squared: 0.0129, Adjusted R-squared: 0.01221
F-statistic: 18.87 on 3 and 4333 DF, p-value: 3.702e-12
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What is our estimate of the effect on those who did not vote in
2008?

β̂1 = 0.019, ŜE β̂1
=.007

What is our estimate of the difference in effects between those
who did and did not vote in 2008?β̂3 = 0.07, ŜE β̂3

=.035
What is our estimate of the effect on those who did vote in
2008?β̂1 + β̂3 = 0.019 + 0.07 = 0.089, ŜE β̂1+β̂3

=. . . not in the
regression output!
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=. . . not in the
regression output!

Mummolo (Stanford) 17 / 43



Example

Example: Gerber et al. (2015)

Registeri = α+ β1treati + β2Voted2008i + β3treati ∗ Voted2008i + εi

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.054616 0.005579 9.789 < 2e-16 ***
treat_combined 0.019151 0.007911 2.421 0.015531 *
v08 0.082999 0.024939 3.328 0.000882 ***
treat_combined:v08 0.066449 0.035049 1.896 0.058040 .

What is our estimate of the effect on those who did not vote in
2008?β̂1 = 0.019, ŜE β̂1
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=.035
What is our estimate of the effect on those who did vote in
2008?β̂1 + β̂3 = 0.019 + 0.07 = 0.089, ŜE β̂1+β̂3

=. . .

not in the
regression output!
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Example: Gerber et al. (2015)
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Estimate Std. Error t value Pr(>|t|)
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Example

Example: Gerber et al. (2015)

Accessing V̂ar [β̂]
> m<-lm(reg ˜ treat_combined+v08+ treat_combined*v08, data=d)
> vc<-vcov(m)
> vc

(Intercept) treat_combined v08 treat_combined:v08
(Intercept) 3.112614e-05 -3.112614e-05 -3.112614e-05 3.112614e-05
treat_combined -3.112614e-05 6.258680e-05 3.112614e-05 -6.258680e-05
v08 -3.112614e-05 3.112614e-05 6.219516e-04 -6.219516e-04
treat_combined:v08 3.112614e-05 -6.258680e-05 -6.219516e-04 1.228412e-03
> varb1<-vc["treat_combined","treat_combined"]
> varb3<-vc["treat_combined:v08","treat_combined:v08"]
> covb1b3<-vc["treat_combined", "treat_combined:v08"]
> seb1b3<-sqrt(varb1+varb3+2*covb1b3)
> seb1b3
[1] 0.03414418
> ##95% CI
> lb<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])-2*seb1b3
> ub<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])+2*seb1b3
> lb
treat_combined

0.01731124
> ub
treat_combined

0.153888
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Example

Example: Gerber et al. (2015)

With robust standard errors

> vc2<-vcovHC(m, type="HC1")
> varb1<-vc2["treat_combined","treat_combined"]
> varb3<-vc2["treat_combined:v08","treat_combined:v08"]
> covb1b3<-vc2["treat_combined", "treat_combined:v08"]
> seb1b3<-sqrt(varb1+varb3+2*covb1b3)
> seb1b3
[1] 0.05137446
> ##95% CI
> lb<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])-2*seb1b3
> ub<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])+2*seb1b3
> lb
treat_combined

-0.01714931
> ub
treat_combined

0.1883485
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Example

Plotting Results

Coefficient Plots (Often better than regression tables!)

> coefs<-c(m$coefficients["treat_combined"], m$coefficients["treat_combined"]+
m$coefficients["treat_combined:v08"], m$coefficients["treat_combined:v08"])
> ses<-c(sqrt(varb1), seb1b3, sqrt(varb3))
> res<-cbind.data.frame(coefs=coefs, ses=ses)
> res$lb<-coefs-2*ses
> res$ub<-coefs+2*ses
>
>
> pdf(file="/Users/jonathanmummolo/Dropbox/Teaching/150C -
2017/150C2017/slides/Midterm Review/gerber_plot.pdf")
> par(mar=c(4, 8, 4, 4 ))
> y.axis<-length(coefs):1
> plot(res$coefs*100, y.axis, pch=19, cex=1, main="Effects of GOTV Letters by V
ote Status in 2008", xlim=c(min(res$lb)*100, max(res$ub)*100), axes=F,
xlab="Treatment Effect (Percentage Points)", ylab="")
> segments(res$lb*100, y.axis, res$ub*100, y.axis)
> abline(v=0, lty=2)
> axis(1, at=seq(-100, 100, by=2))
> axis(2, at=y.axis, labels=c("Did not Vote 2008", "Voted 2008", "Difference"), las=2)
> dev.off()
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Example

Estimates, Gerber et al. (2015)

●

●

●

Effects of GOTV Letters by Vote Status in 2008

Treatment Effect (Percentage Points)

−4 −2 0 2 4 6 8 10 12 14 16 18

Difference in Effects

Voted 2008

Did not Vote 2008
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Continuous Moderators

Continuous Moderators

What if we interacted treatment with years since release from prison (a
continuous variable)? What is the SE of the marginal effect?

ŜE β̂1+β̂3
=
√

V̂ar [β̂1] + X 2V̂ar [β̂3] + 2 ∗ X ∗ ˆcov [β̂1, β̂3]

Since X now takes many values besides zero and 1, the SE will often
depend on the value of X as well!
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Continuous Moderators

Continuous Moderators

> coeftest(m, vcov.=vc2)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0631789 0.0093177 6.7805 1.304e-11 ***
treat_combined 0.0480999 0.0149249 3.2228 0.001276 **
timesincerelease -0.0031440 0.0045173 -0.6960 0.486455
treat_combined:timesincerelease -0.0167266 0.0070551 -2.3709 0.017776 *
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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Continuous Moderators

Continuous Moderators

> summary(d$timesincerelease)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.252 1.014 1.771 1.808 2.618 3.459
x.vals<-seq(min(d$timesincerelease)-10, max(d$timesincerelease)+10, length=100)

> varb1<-vc2["treat_combined","treat_combined"]
> varb3<-vc2["treat_combined:timesincerelease","treat_combined:timesincerelease"]
> covb1b3<-vc2["treat_combined:timesincerelease", "treat_combined"]
> seb1b3<-sqrt(varb1 + x.valsˆ2*varb3 + 2*x.vals*covb1b3)
> seb1b3

[1] 0.082606417 0.080957281 0.079308340 0.077659605 0.076011090 0.074362810 0.072714780
[8] 0.071067018 0.069419543 0.067772376 0.066125540 0.064479061 0.062832966 0.061187286
[15] 0.059542056 0.057897314 0.056253104 0.054609472 0.052966474 0.051324169 0.049682626
[22] 0.048041924 0.046402152 0.044763412 0.043125821 0.041489516 0.039854656 0.038221424
[29] 0.036590041 0.034960763 0.033333901 0.031709825 0.030088988 0.028471941 0.026859371
[36] 0.025252134 0.023651317 0.022058319 0.020474964 0.018903677 0.017347735 0.015811670
[43] 0.014301889 0.012827674 0.011402829 0.010048378 0.008796896 0.007698763 0.006828369
[50] 0.006281113 0.006143959 0.006443150 0.007123919 0.008090510 0.009253788 0.010548882
[57] 0.011932951 0.013378409 0.014867361 0.016387957 0.017932148 0.019494327 0.021070495
[64] 0.022657733 0.024253866 0.025857248 0.027466609 0.029080957 0.030699505 0.032321622
[71] 0.033946796 0.035574609 0.037204713 0.038836821 0.040470690 0.042106116 0.043742922
[78] 0.045380961 0.047020103 0.048660237 0.050301266 0.051943104 0.053585679 0.055228923
[85] 0.056872778 0.058517194 0.060162125 0.061807529 0.063453369 0.065099612 0.066746229
[92] 0.068393193 0.070040478 0.071688063 0.073335929 0.074984055 0.076632425 0.078281025
[99] 0.079929839 0.081578855
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Continuous Moderators

Estimates, Gerber et al. (2015)
Effect of GOTV Letter by Years Since Prison Release
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Continuous Moderators

Where Do We Actually Have Data?
Effect of GOTV Letter by Years Since Prison Release
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Continuous Moderators

Restrict Inference to Region With Data to Avoid
Extrapolation/Model Dependence

Effect of GOTV Letter by Years Since Prison Release
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The LIE Assumption

Linear Interaction Effect (LIE) Assumption

Implicit in the linear multiplicative model: the marginal effect of
D|X is linear

β1 + β3X is the equation of a line
Not a problem when X is discrete. No smoothing required; simply
estimate average effect of D at each discrete value of X
When X is continuous, several problems can arise!
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The LIE Assumption

Continuous Interactions

The LIE assumption is very restrictive. For example, does not
allow effect of D to be large when X is low, small when X is
medium, and large again when X is high.

We can use flexible estimators to allow for this and similar
possibilities
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The LIE Assumption

Hainmueller, Mummolo and Xu (2017)

Problem 1: Nonlinearity

Simplest solution: bin up the data
Create low, medium and high bins of X , interact D with dummy
variables for each bin
Allows effect of D to vary across those ranges. (Can use more bins
if you like)

Poor overlap between D and X

Leads to unintentional extrapolation/interpolation, fragile and
model-dependent results
Look at the data! Plot joint distributions, plot marginal effect against
distribution, generate cross tabs, etc.
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The LIE Assumption

Problem 1: Nonlinearity

assumes that party systems are in some sort of “equilibrium.” Many of the
newly democratic countries that were included in these two models may sim-
ply not have reached their equilibrium yet, thereby weakening the results.
This tentative explanation receives some support from the fact that district
magnitude does have the predicted modifying effect in the 1990s cross
section once we focus on established democracies only.

What about the effect of presidential elections? The evidence presented in
Table 2 provides considerable support for the claim that temporally proxi-
mate presidential elections reduce the number of parties when there are few
presidential candidates (β5 is negative and significant in all models) but that
this reductive effect becomes weaker as the number of presidential candi-
dates increases (β8 is positive and significant in all models). Figure 2 plots the
marginal effect of temporally proximate presidential elections. The solid
sloping line indicates how this marginal effect is modified by the number of
presidential candidates. Once again, one can discern whether this effect is
significant by examining the two-tailed 90% confidence intervals that are
drawn around it. It should be clear that temporally proximate presidential
elections have a strong reductive effect on the number of parties when there
are few presidential candidates. As predicted, this reductive effect declines as
the number of candidates increases. Once the number of presidential candi-
dates becomes sufficiently large, presidential elections stop having a signifi-
cant effect on the number of parties. Although Figure 2 is based on the pooled

702 Comparative Political Studies

Figure 2
The Marginal Effect of Temporally Proximate Presidential Elections

on the Effective Number of Electoral Parties

 at Stanford University Libraries on June 2, 2015cps.sagepub.comDownloaded from 
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The LIE Assumption

Problem 1: Nonlinearity (Clark and Golder, 2006)
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The LIE Assumption

Problem 1: Nonlinearity (Clark and Golder, 2006)
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The LIE Assumption

Problem 2: Extrapolation (Chapman, 2009)Audience Beliefs and International Organization Legitimacy 757 

FIGURE 2. Marginal effect of UN authorization by affinity with the Security 
Council 

number of allies tended to slightly reduce rally sizes, which contradicts the burden- 
sharing hypothesis. This effect is not strong but is statistically significant. 

Additional Tests 

Although the data support H1-H3, there are several limitations to the analysis. 
First, it is possible that the role of the SC as well as public perceptions of it have 
changed since the end of the Cold War. Several scholars have suggested that the 
organization gained legitimacy after 1990, and particularly after the successful 
authorization of the 1991 Persian Gulf War.88 The basic argument is that the SC 
became more active in the post-Cold War period because the superpower-induced 
deadlock that characterized earlier periods was alleviated, and citizens afforded it 
more legitimacy in the aftermath of this stalemate. To address the concern that 
the small number of post-Cold War authorizations drives the results, Model 2 in 
Table 2 displays estimates restricted to the Cold War sample only. The variable 
sc authorization and its interaction with the S score is dropped from the model 
when estimated on only the Cold War cases because there is only one instance of 
a clear authorization - the Korean War. However, the S score has a highly signif- 
icant and negative coefficient in this sample (-4.431, p < .05), indicating that as 
the S score became more positive - indicating greater preference similarity between 

88. See Malone 2004; and Voeten 2005. 

This content downloaded from 171.66.210.7 on Wed, 03 Jun 2015 02:55:44 UTC
All use subject to JSTOR Terms and Conditions
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The LIE Assumption

Problem 2: Extrapolation (Chapman, 2009)
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The LIE Assumption

Problem 2: Extrapolation (Chapman, 2009)
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The LIE Assumption

Problem 2: Extrapolation Part 2 (Nyhan and Reifler,
2010)

significant (p \ 0.01), suggesting that the effect of the correction does vary by
ideology.20

Because interaction terms are often difficult to interpret, we follow Brambor et al.
(2006) and plot the estimated marginal effect of the correction and the 95%
confidence interval over the range of ideology in Fig. 1.

For very liberal subjects, the correction worked as expected, making them more
likely to disagree with the statement that Iraq had WMD compared with controls.
The correction did not have a statistically significant effect on individuals who
described themselves as liberal, somewhat left of center, or centrist. But most
importantly, the effect of the correction for individuals who placed themselves to
the right of center ideologically is statistically significant and positive. In other
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Fig. 1 Effect of correction on WMD misperception. Estimated marginal effect by ideology: fall 2005

Table 1 OLS regression models of WMD misperception (fall 2005)

Model 1 Model 2

Correction 0.065 (0.191) 0.240 (0.196)

Ideology 0.347 (0.064)*** 0.199 (0.082)***

Political knowledge -1.133 (0.372)*** -1.081 (0.362)***

Mortality salience 0.280 (0.192) 0.271 (0.187)

Correction * ideology 0.359 (0.127)***

Constant 3.245*** (0.331) 3.156*** (0.323)

R2 0.24 0.29

N 130 130

* p \ 0.10, ** p \ 0.05, *** p \ 0.01 (two-sided)

20 This interaction was not moderated by political knowledge. When we estimated models with the full
array of interactions between knowledge, ideology, and corrections, we could not reject the null
hypothesis that the model fit was not improved for any of the studies in this paper (results available upon
request).

314 Polit Behav (2010) 32:303–330

123
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The LIE Assumption

Problem 2: Extrapolation Part 2 (Nyhan and Reifler,
2010)

Where do we have data?
> dim(d)
[1] 130 13
> table(d$iraqcorr, d$ideolcen)##7 point scale

Very liberal Liberal Somewhat left of center Centrist Somewhat right of center Conservative
0 2 21 10 18 10 5
1 3 18 8 17 9 5

Very conservative
0 4
1 0
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The LIE Assumption

Problem 2: Extrapolation Part 2 (Nyhan and Reifler,
2010)
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The LIE Assumption

Problem 3: Interpolation (Malesky et al., 2012)American Political Science Review

FIGURE 1. Intensity of Treatment Effect

Note: Displays the marginal effect of treatment on number of critical questions asked and percentage of critical questions, based on
internet penetration, which impacts the intensity experienced by delegates. The panels are derived from the fully-specified models (4,
8, 9, and 10) in Table 5. Triangles demonstrate marginal effects. with range bars representing 90% Confidence Intervals.

penetration is about 8% (the level observed in Hanoi
and Ho Chi Minh City) , we find that treated delegates
ask a full question less and reduce their criticism more
than 12% below the delegates in the control group—a
highly significant difference, as measured by the t-value
over 6. When we compare the treatment intensity be-
tween the sixth session and average participation in
Models 9 and 10, we see similar though slightly less
pronounced results. Here, the effect is a reduction of
about 0.6 questions and 0.8% less criticism in the fully
specified model.

The component terms in the interaction are not ro-
bustly significant, but are uniformly positively signed.
Nevertheless, we cannot say definitively that the trans-
parency or Internet penetration has an independent
effect on delegate participation. Figure 1 provides
a graphic illustration of the predicted effects from
the four fully specified models. Triangles depict the
marginal effect of treatment at different levels of In-
ternet penetration, whereas range bars show 90% con-
fidence intervals. The graphs show clearly that at low
levels of Internet penetration, treatment has no impact
on delegate behavior, but at high levels of Internet pen-
etration, the treatment effect is large and significant.17

17 A continuous measurement of treatment intensity may be inap-
propriate, as it is possible that penetration only needs to reach a
particular threshold to influence delegate behavior. After that, ad-
ditional increases in penetration may have little effect. As a robust-
ness check in Online Appendix 12, we use a dichotomous measure
of sufficient penetration and rerun our analysis. We use different
cutoffs ranging from 4% to 8%. Our findings are unchanged by
these specifications. To be conservative, we present the continuous

The results of the treatment-intensity analysis could
lead to several interpretations. Based solely on the per-
formance in the query sessions, delegates appear to be-
have according to the adverse consequences hypothesis
(H1). Delegates receiving the strongest exposure to the
“Delegates of the National Assembly” web page were
the most likely to curtail their activities and criticism
of national policy and top leaders. Transparency forced
them to behave in a conforming manner, as they feared
their comments may be revealed to the public. Such
revelations may have led to public unrest and damaged
the co-optive exchange worked out between delegates
and the leadership.

Further analysis reveals that the three alternative
measures of treatment intensity (urban share, college
students, and state employment) demonstrate a simi-
lar pattern in all specifications. Although the findings
are only statistically significant when it comes to the
number of questions asked for urbanization and col-
lege share, the robustness of the pattern is telling.18

The interaction between the treatment and intensity
measure is always negative and sizable, indicating that
increased exposure reduces the willingness of delegates
to participate and criticize. This is strong evidence for
the adverse consequences hypothesis.

treatment effects in Table 5, as there is little literature to suggest
what an appropriate threshold penetration should be. Moreover, if
a threshold effect is relevant and the case and each unit change in
internet penetration has little effect, this would actually bias against
a significant finding.
18 Available in supplemental Online Appendix 11.
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The LIE Assumption

Problem 3: Interpolation (Malesky et al., 2012)
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Summary

Summary

Multiplicative Interaction Models: useful for estimating
heterogeneity in treatment effects

Marginal effect of treatment now hinges on moderator’s value, so
interpretation of model output more complicated
Be careful with continuous moderators: modeling assumptions
and data overlap affect results
Look at the data, look at the data, look at the data
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