150C Causal Inference

Treatment Effect Heterogeneity and Multiplicative Interaction Models

Jonathan Mummolo

Stanford University

Often we are interested not only in the Average Treatment Effect (ATE) but in the Conditional Average Treatment Effect (CATE)

Conditional Effects

- Often we are interested not only in the Average Treatment Effect (ATE) but in the Conditional Average Treatment Effect (CATE)
- **Effect of some treatment holding a covariate at a fixed value**
- Often we are interested not only in the Average Treatment Effect (ATE) but in the Conditional Average Treatment Effect (CATE)
- **Effect of some treatment holding a covariate at a fixed value**

•
$$
E[Y_1|X = x] - E[Y_0|X = x] = E[Y_1 - Y_0|X = x]
$$

- Often we are interested not only in the Average Treatment Effect (ATE) but in the Conditional Average Treatment Effect (CATE)
- **Effect of some treatment holding a covariate at a fixed value**

•
$$
E[Y_1|X = x] - E[Y_0|X = x] = E[Y_1 - Y_0|X = x]
$$

We might further be interested in knowing whether two CATEs differ from one another:

- Often we are interested not only in the Average Treatment Effect (ATE) but in the Conditional Average Treatment Effect (CATE)
- **Effect of some treatment holding a covariate at a fixed value**

•
$$
E[Y_1|X = x] - E[Y_0|X = x] = E[Y_1 - Y_0|X = x]
$$

We might further be interested in knowing whether two CATEs differ from one another:

•
$$
(E[Y_{i1} - Y_{i0}|X = x_j]) - (E[Y_{i1} - Y_{i0}|X = x_k])
$$
 where $j \neq k$

- Often we are interested not only in the Average Treatment Effect (ATE) but in the Conditional Average Treatment Effect (CATE)
- Effect of some treatment holding a covariate at a fixed value

•
$$
E[Y_1|X = x] - E[Y_0|X = x] = E[Y_1 - Y_0|X = x]
$$

- We might further be interested in knowing whether two CATEs differ from one another:
- $(\text{\it E}[Y_{i1}-Y_{i0}|X=x_{j}])-(\text{\it E}[Y_{i1}-Y_{i0}|X=x_{k}])$ where $j\neq k$
- "Effect heterogeneity", "Heterogeneous treatment effects," "subgroup effects," "interaction effects"

(Hypothetical) Examples

The magnitude—and sometimes, the direction—of the effect of some treatment depends on an additional factor.

(Hypothetical) Examples

The magnitude—and sometimes, the direction—of the effect of some treatment depends on an additional factor.

• The effect of medicine X on health is positive for those below age 35, but negative for those above age 35

The magnitude—and sometimes, the direction—of the effect of some treatment depends on an additional factor.

- The effect of medicine X on health is positive for those below age 35, but negative for those above age 35
- Seeing negative political ads causes old people to vote, young people to stay home

The magnitude—and sometimes, the direction—of the effect of some treatment depends on an additional factor.

- The effect of medicine X on health is positive for those below age 35, but negative for those above age 35
- Seeing negative political ads causes old people to vote, young people to stay home
- Police body cameras cause a decline in the use of force by officers in large police departments, but have no effect for officers in small police departments

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is the conditioning variable (sometimes called a moderator).

● How to interpret correctly?

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- How to interpret correctly?
- Long way: set *Dⁱ* and *Xⁱ* to given values, recover parameters under different scenarios.

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is the conditioning variable (sometimes called a moderator).

 $\mathsf{Example:}$ What is $(E[Y_i | X_i = 1, D_i = 1]) - (E[Y_i | X_i = 1, D_i = 0])$?

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- $\mathsf{Example:}$ What is $(E[Y_i | X_i = 1, D_i = 1]) (E[Y_i | X_i = 1, D_i = 0])$?
- $\mathcal{L}\left(E[Y_{i}|X_{i}=1, D_{i}=1]\right)=\alpha+\beta_{1}*1+\beta_{2}*1+\beta_{3}*1*1$ (mean-zero error term drops out) = $\alpha + \beta_1 + \beta_2 + \beta_3$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- $\mathsf{Example:}$ What is $(E[Y_i | X_i = 1, D_i = 1]) (E[Y_i | X_i = 1, D_i = 0])$?
- $\mathcal{L}\left(E[Y_{i}|X_{i}=1, D_{i}=1]\right)=\alpha+\beta_{1}*1+\beta_{2}*1+\beta_{3}*1*1$ (mean-zero error term drops out) = $\alpha + \beta_1 + \beta_2 + \beta_3$

•
$$
(E[Y_i|X_i = 1, D_i = 0]) = \alpha + \beta_1 * 0 + \beta_2 * 1 + \beta_3 * 0 * 1 = \alpha + \beta_2
$$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- $\mathsf{Example:}$ What is $(E[Y_i | X_i = 1, D_i = 1]) (E[Y_i | X_i = 1, D_i = 0])$?
- $\mathcal{L}\left(E[Y_{i}|X_{i}=1, D_{i}=1]\right)=\alpha+\beta_{1}*1+\beta_{2}*1+\beta_{3}*1*1$ (mean-zero error term drops out) = $\alpha + \beta_1 + \beta_2 + \beta_3$

•
$$
(E[Y_i|X_i = 1, D_i = 0]) = \alpha + \beta_1 * 0 + \beta_2 * 1 + \beta_3 * 0 * 1 = \alpha + \beta_2
$$

• So
$$
(E[Y_i|X_i = 1, D_i = 1]) - (E[Y_i|X_i = 1, D_i = 0]) =
$$

 $(\alpha + \beta_1 + \beta_2 + \beta_3) - (\alpha + \beta_2) = \beta_1 + \beta_3$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- $\mathsf{Example:}$ What is $(E[Y_i | X_i = 1, D_i = 1]) (E[Y_i | X_i = 1, D_i = 0])$?
- $\mathcal{L}\left(E[Y_{i}|X_{i}=1, D_{i}=1]\right)=\alpha+\beta_{1}*1+\beta_{2}*1+\beta_{3}*1*1$ (mean-zero error term drops out) = $\alpha + \beta_1 + \beta_2 + \beta_3$
- $\mathcal{L}\left(E[Y_{i}|X_{i}=1,D_{i}=0]\right) =\alpha+\beta_{1}*0+\beta_{2}*1+\beta_{3}*0*1=\alpha+\beta_{2}$
- ${\rm So} \ (E[Y_i | X_i=1, D_i=1]) (E[Y_i | X_i=1, D_i=0]) = 0$ $(\alpha + \beta_1 + \beta_2 + \beta_3) - (\alpha + \beta_2) = \beta_1 + \beta_3$
- \bullet = Treatment effect for those units with $X = 1$ (where *X* could be a dummy for gender, party ID, old/young, etc.)

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is a dichotomous conditioning variable (sometimes called a moderator).

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is a dichotomous conditioning variable (sometimes called a moderator).

•
$$
(E[Y_i|X_i=0,D_i=1]) = \alpha + \beta_1 * 1 + \beta_2 * 0 + \beta_3 * 1 * 0 = \alpha + \beta_1
$$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is a dichotomous conditioning variable (sometimes called a moderator).

•
$$
(E[Y_i|X_i=0,D_i=1]) = \alpha + \beta_1 * 1 + \beta_2 * 0 + \beta_3 * 1 * 0 = \alpha + \beta_1
$$

•
$$
(E[Y_i|X_i = 0, D_i = 0]) = \alpha + \beta_1 * 0 + \beta_2 * 0 + \beta_3 * 0 * 0 = \alpha
$$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is a dichotomous conditioning variable (sometimes called a moderator).

•
$$
(E[Y_i|X_i=0,D_i=1]) = \alpha + \beta_1 * 1 + \beta_2 * 0 + \beta_3 * 1 * 0 = \alpha + \beta_1
$$

•
$$
(E[Y_i|X_i = 0, D_i = 0]) = \alpha + \beta_1 * 0 + \beta_2 * 0 + \beta_3 * 0 * 0 = \alpha
$$

• So
$$
(E[Y_i|X_i = 0, D_i = 1]) - (E[Y_i|X_i = 0, D_i = 0]) = (\alpha + \beta_1) - (\alpha) = \beta_1
$$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is a dichotomous conditioning variable (sometimes called a moderator).

•
$$
(E[Y_i|X_i=0,D_i=1]) = \alpha + \beta_1 * 1 + \beta_2 * 0 + \beta_3 * 1 * 0 = \alpha + \beta_1
$$

•
$$
(E[Y_i|X_i = 0, D_i = 0]) = \alpha + \beta_1 * 0 + \beta_2 * 0 + \beta_3 * 0 * 0 = \alpha
$$

- ${\rm So} \ (E[Y_i | X_i = 0, D_i = 1]) (E[Y_i | X_i = 0, D_i = 0]) = (\alpha + \beta_1) (\alpha) = \beta_1$
- \bullet =Treatment effect for those units with $X = 0$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

where D_i is the treatment and X_i is the conditioning variable (sometimes called a moderator).

 T herefore: What is $[(E[Y_{i}|X_{i}=1, D_{i}=1])-(E[Y_{i}|X_{i}=1, D_{i}=1])$ 0])] − [(*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 1]) − (*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 0])]?

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- T herefore: What is $[(E[Y_{i}|X_{i}=1, D_{i}=1])-(E[Y_{i}|X_{i}=1, D_{i}=1])$ 0])] − [(*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 1]) − (*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 0])]?
- \bullet Difference between the treatment effect for those units with $X = 1$ and those units with $X = 0$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- T herefore: What is $[(E[Y_{i}|X_{i}=1, D_{i}=1])-(E[Y_{i}|X_{i}=1, D_{i}=1])$ 0])] − [(*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 1]) − (*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 0])]?
- \bullet Difference between the treatment effect for those units with $X = 1$ and those units with $X = 0$
- \bullet $(\beta_1 + \beta_3) (\beta_1) = \beta_3$

Definition (Linear Interaction Model)

Workhorse model in social science for estimating the CATE: the linear interaction model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- T herefore: What is $[(E[Y_{i}|X_{i}=1, D_{i}=1])-(E[Y_{i}|X_{i}=1, D_{i}=1])$ 0])] − [(*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 1]) − (*E*[*Yⁱ* |*Xⁱ* = 0, *Dⁱ* = 0])]?
- \bullet Difference between the treatment effect for those units with $X = 1$ and those units with $X = 0$
- \bullet ($\beta_1 + \beta_3$) (β_1) = β_3
- β³ represents the *difference* in treatment effects between the two groups (i.e. the difference-in-differences)

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

• Shorter way: calculus

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- Shorter way: calculus
- **•** The marginal effect of *D* is just the first derivative of this function with respect to $D = \frac{\partial Y_i}{\partial D_i}$ = the rate at which Y changes given a one-unit ∂*Dⁱ* increase in *D* holding all else constant

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

• Shorter way: calculus

- **•** The marginal effect of *D* is just the first derivative of this function with respect to $D = \frac{\partial Y_i}{\partial D_i}$ = the rate at which *Y* changes given a one-unit increase in *D* holding all else constant
- **•** Remember "rise over run"? Change in Y given a change in X. Slope of *X*. All descriptions of first derivatives.

Say we are taking the derivative of some function *f* with respect to some variable *X*. Consider also some constants *a*, *b* and *c*.

Constant: $\frac{\partial f}{\partial X}(c) = 0$

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$

• Addition:
$$
\frac{\partial f}{\partial X}(aX + bX) = a + b
$$

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$
- $\mathsf{Addition} \colon \frac{\partial f}{\partial X}(aX + bX) = a + b$
- $\textsf{Subtraction: } \frac{\partial f}{\partial X}(aX bX) = a b$

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$
- $\mathsf{Addition} \colon \frac{\partial f}{\partial X}(aX + bX) = a + b$
- $\textsf{Subtraction: } \frac{\partial f}{\partial X}(aX bX) = a b$
- **Power Rule**: ∂*f* ∂*X* (*aXⁿ*) = *n* ∗ *a* ∗ *X n*−1
Say we are taking the derivative of some function *f* with respect to some variable *X*. Consider also some constants *a*, *b* and *c*.

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$
- $\mathsf{Addition} \colon \frac{\partial f}{\partial X}(aX + bX) = a + b$
- $\textsf{Subtraction: } \frac{\partial f}{\partial X}(aX bX) = a b$
- **Power Rule**: ∂*f* ∂*X* (*aXⁿ*) = *n* ∗ *a* ∗ *X n*−1
	- Suppose *n* = 1. Then $\frac{\partial f}{\partial X}(aX^n) = (1 * aX^{1-0}) = 1 * a * 1 = a$

Say we are taking the derivative of some function *f* with respect to some variable *X*. Consider also some constants *a*, *b* and *c*.

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$
- $\mathsf{Addition} \colon \frac{\partial f}{\partial X}(aX + bX) = a + b$
- $\textsf{Subtraction: } \frac{\partial f}{\partial X}(aX bX) = a b$
- **Power Rule**: ∂*f* ∂*X* (*aXⁿ*) = *n* ∗ *a* ∗ *X n*−1
	- Suppose *n* = 1. Then $\frac{\partial f}{\partial X}(aX^n) = (1 * aX^{1-0}) = 1 * a * 1 = a$

Multiple Variables [∂]*^f* ∂*X* (*aX* + *bY*) = *a* + 0 = *a* (Anything without *X* gets treated as a constant)

Say we are taking the derivative of some function *f* with respect to some variable *X*. Consider also some constants *a*, *b* and *c*.

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$
- $\mathsf{Addition} \colon \frac{\partial f}{\partial X}(aX + bX) = a + b$
- $\textsf{Subtraction: } \frac{\partial f}{\partial X}(aX bX) = a b$
- **Power Rule**: ∂*f* ∂*X* (*aXⁿ*) = *n* ∗ *a* ∗ *X n*−1
	- Suppose *n* = 1. Then $\frac{\partial f}{\partial X}(aX^n) = (1 * aX^{1-0}) = 1 * a * 1 = a$

Multiple Variables [∂]*^f* ∂*X* (*aX* + *bY*) = *a* + 0 = *a* (Anything without *X* gets treated as a constant) What is [∂]*^f* ∂*Y* (*aX* + *bY*)?

Say we are taking the derivative of some function *f* with respect to some variable *X*. Consider also some constants *a*, *b* and *c*.

- **Constant**: $\frac{\partial f}{\partial X}(c) = 0$
- $\textsf{Multiplication by a constant: } \frac{\partial f}{\partial X} (cX) = c$
- $\mathsf{Addition} \colon \frac{\partial f}{\partial X}(aX + bX) = a + b$
- $\textsf{Subtraction: } \frac{\partial f}{\partial X}(aX bX) = a b$
- **Power Rule**: ∂*f* ∂*X* (*aXⁿ*) = *n* ∗ *a* ∗ *X n*−1
	- Suppose *n* = 1. Then $\frac{\partial f}{\partial X}(aX^n) = (1 * aX^{1-0}) = 1 * a * 1 = a$
- **Multiple Variables** [∂]*^f* ∂*X* (*aX* + *bY*) = *a* + 0 = *a* (Anything without *X* gets treated as a constant) What is [∂]*^f* ∂*Y* (*aX* + *bY*)? $0 + b = b$

[Motivation](#page-40-0)

Linear Interaction Model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

[Motivation](#page-41-0)

Linear Interaction Model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

$$
\bullet \ \frac{\partial Y_i}{\partial D_i} = \frac{\partial}{\partial D_i} (\alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i)
$$

[Motivation](#page-42-0)

Linear Interaction Model

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

$$
\bullet \ \frac{\partial Y_i}{\partial D_i} = \frac{\partial}{\partial D_i} (\alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i) = 0 + \beta_1 + 0 + \beta_3 X_i = \beta_1 + \beta_3 X_i
$$

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

Now that we have the expression for the marginal effect, $\beta_1+\beta_3\pmb{X}_i$, we can plug in values of D_i and X_i to obtain the marginal effect of our treatment under different scenarios, as well as differences between various effects.

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

Now that we have the expression for the marginal effect, $\beta_1+\beta_3\pmb{X}_i$, we can plug in values of D_i and X_i to obtain the marginal effect of our treatment under different scenarios, as well as differences between various effects.

• Key insight here: the marginal effect of D_i now depends on the value **of** *Xⁱ*

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

Now that we have the expression for the marginal effect, $\beta_1+\beta_3\pmb{X}_i$, we can plug in values of D_i and X_i to obtain the marginal effect of our treatment under different scenarios, as well as differences between various effects.

- **•** Key insight here: the marginal effect of D_i now depends on the value **of** *Xⁱ*
- **•** So long as $\beta_3 \neq 0$, the effect of D_i will differ depending on the value of X_i

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

Now that we have the expression for the marginal effect, $\beta_1+\beta_3\pmb{X}_i$, we can plug in values of D_i and X_i to obtain the marginal effect of our treatment under different scenarios, as well as differences between various effects.

- **•** Key insight here: the marginal effect of D_i now depends on the value **of** *Xⁱ*
- **•** So long as $\beta_3 \neq 0$, the effect of D_i will differ depending on the value of X_i
- Multiplicative interaction model allows for heterogeneous effects \bullet

How to Obtain Standard Errors for Marginal Effects

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

 \bullet Effect of *D* when $X = 0$:

How to Obtain Standard Errors for Marginal Effects

Definition (Linear Interaction Model)

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

• Effect of *D* when $X = 0: \beta_1$

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- **Effect of** *D* **when** $X = 0: \beta_1$
- Difference in effect of *D* when $X = 1$ vs. when $X = 0$:

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- **Effect of** *D* **when** $X = 0: \beta_1$
- Difference in effect of *D* when $X = 1$ vs. when $X = 0$: β_3

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- **Effect of D when** $X = 0$ **:** β_1
- Difference in effect of *D* when $X = 1$ vs. when $X = 0$: β_3
- Standard OLS routines report standard errors for our estimates of these coefficients, $\hat{\beta}_1$ and $\hat{\beta}_3$

$$
Y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \beta_3 D_i * X_i + \epsilon_i
$$

- **Effect of D when** $X = 0$ **:** β_1
- Difference in effect of *D* when $X = 1$ vs. when $X = 0$: β_3
- Standard OLS routines report standard errors for our estimates of these coefficients, $\hat{\beta}_1$ and $\hat{\beta}_3$
- How do we find the standard error of the marginal effect of *D* when X is 1, which is $\hat{\beta}_1+\hat{\beta}_3?$

Review: Rules of Variance

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

Review: Rules of Variance

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

Review: Rules of Variance

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

 $SE[aX + bY] = \sqrt{a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]}$

So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$

Review: Rules of Variance

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

- So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$
- What are the random variables here?

Review: Rules of Variance

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

- So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$
- What are the random variables here? $\hat{\beta}_1+\hat{\beta}_3$

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

- So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$
- What are the random variables here? $\hat{\beta}_1+\hat{\beta}_3$
- What are the constants?

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

- So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$
- What are the random variables here? $\hat{\beta}_1+\hat{\beta}_3$
- What are the constants? *X*

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

- So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$
- What are the random variables here? $\hat{\beta}_1+\hat{\beta}_3$
- What are the constants? *X*
- **•** Remember, we are estimating the uncertainty in our estimates of *coefficients* (which will vary from sample to sample due to random error) in a scenario where we are setting *D* and *X* to *constant* values (i.e. $E[Y|D = 1, X = 1]$)

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

 $SE[aX + bY] = \sqrt{a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]}$

So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

 $SE[aX + bY] = \sqrt{a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]}$

So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$

$$
\bullet\,\sqrt{1^2\mathit{Var}[\hat{\beta}_1]+X^2\mathit{Var}[\hat{\beta}_3]+2*1*X*cov[\hat{\beta}_1,\hat{\beta}_3]}
$$

Given some random variables *X* and *Y* and some constants *a* and *b*:

Definition (The Variance Operator)

$$
Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]
$$

$$
SE[aX + bY] = \sqrt{a^2 Var[X] + b^2 Var[Y] + 2ab * cov[X, Y]}
$$

- So, in our interaction model, what is $\mathcal{S}\mathcal{E}[\hat{\beta}_1+\hat{\beta}_3\mathcal{X}]?$
- $\sqrt{1^2 \text{Var}[\hat{\beta}_1] + X^2 \text{Var}[\hat{\beta}_3] + 2 * 1 * X * \text{cov}[\hat{\beta}_1, \hat{\beta}_3]}$
- **If** $X = 1$, then $\mathcal{S}\mathcal{E}[\hat{\beta}_1 + \hat{\beta}_3 \mathcal{X}] = \sqrt{\text{Var}[\hat{\beta}_1] + \text{Var}[\hat{\beta}_3] + 2*\text{cov}[\hat{\beta}_1, \hat{\beta}_3]}$
- We can compute this in-sample using estimates of the necessary variances and covariances.

Review: Variance-Covariance Matrix of Coefficients

Definition (Variance of Coefficients)

• Variances on the diag, covariances on the off-diag

Review: Variance-Covariance Matrix of Coefficients

Definition (Variance of Coefficients)

- Variances on the diag, covariances on the off-diag
- Standard OLS routines estimate this matrix, and we can access it to recover $\hat{SE}[\hat{\beta}_{1}+\hat{\beta}_{3}X]$

"Can Incarcerated Felons Be (Re)integrated into the Political System? Results from a Field Experiment". Ex-cons sent letters encouraging them to register/vote.

<i>treat_i + β_2 *Voted*2008*i* + β_3 *treat_i* * *Voted*2008*i* + ϵ_i

> summary(lm(req ~ treat combined+v08+ treat combined*v08, data=d) Coefficients:

Residual standard error: 0.2538 on 4333 degrees of freedom (2104 observations deleted due to missingness) Multiple R-squared: 0.0129, Adjusted R-squared: 0.01221 F-statistic: 18.87 on 3 and 4333 DF, p-value: 3.702e-12

[Example](#page-67-0)

Example: Gerber et al. (2015)

*Register*_{*i*} = $\alpha + \beta_1$ *treat_i* + β_2 *Voted*2008*_{<i>i*} + β_3 treat_i * *Voted*2008_{*i*} + ϵ_i

What is our estimate of the effect on those who *did not* vote in 2008?

[Example](#page-68-0)

Example: Gerber et al. (2015)

<i>treat_i + β_2 *Voted*2008*i* + β_3 *treat_i* * *Voted*2008*i* + ϵ_i

What is our estimate of the effect on those who *did not* vote in 2008? $\hat{\beta}_1 =$ 0.019, $\hat{SE}_{\hat{\beta}_1}$ =.007

<i>treat_i + β_2 *Voted*2008*i* + β_3 *treat_i* * *Voted*2008*i* + ϵ_i

- What is our estimate of the effect on those who *did not* vote in 2008? $\hat{\beta}_1 =$ 0.019, $\hat{SE}_{\hat{\beta}_1}$ =.007
- What is our estimate of the *difference* in effects between those who did and did not vote in 2008?

<i>treat_i + β_2 *Voted*2008*i* + β_3 *treat_i* * *Voted*2008*i* + ϵ_i

- What is our estimate of the effect on those who *did not* vote in 2008? $\hat{\beta}_1 =$ 0.019, $\hat{SE}_{\hat{\beta}_1}$ =.007
- What is our estimate of the *difference* in effects between those who did and did not vote in 2008? $\hat\beta_3=$ 0.07, $\hat{SE}_{\hat\beta_3}$ =.035

<i>treat_i + β_2 *Voted*2008*i* + β_3 *treat_i* * *Voted*2008*i* + ϵ_i

- What is our estimate of the effect on those who *did not* vote in 2008? $\hat{\beta}_1 =$ 0.019, $\hat{SE}_{\hat{\beta}_1}$ =.007
- What is our estimate of the *difference* in effects between those who did and did not vote in 2008? $\hat\beta_3=$ 0.07, $\hat{SE}_{\hat\beta_3}$ =.035
- What is our estimate of the effect on those who *did* vote in 2008?
<i>treat_i + β_2 *Voted*2008*i* + β_3 *treat_i* * *Voted*2008*i* + ϵ_i

- What is our estimate of the effect on those who *did not* vote in 2008? $\hat{\beta}_1 =$ 0.019, $\hat{SE}_{\hat{\beta}_1}$ =.007
- What is our estimate of the *difference* in effects between those who did and did not vote in 2008? $\hat\beta_3=$ 0.07, $\hat{SE}_{\hat\beta_3}$ =.035
- What is our estimate of the effect on those who *did* vote in ${\bf 2008?}\hat{\beta}_1+\hat{\beta}_3={\bf 0.019+0.07}={\bf 0.089},\, \hat{\bm{SE}}_{\hat{\beta}_1+\hat{\beta}_3}$ = \ldots

<i>treat_i + β_2 *Voted*2008*i* + β_3 *treat_i* * *Voted*2008*i* + ϵ_i

- What is our estimate of the effect on those who *did not* vote in 2008? $\hat{\beta}_1 =$ 0.019, $\hat{SE}_{\hat{\beta}_1}$ =.007
- What is our estimate of the *difference* in effects between those who did and did not vote in 2008? $\hat\beta_3=$ 0.07, $\hat{SE}_{\hat\beta_3}$ =.035
- What is our estimate of the effect on those who *did* vote in 2008? $\hat{\beta}_1 + \hat{\beta}_3 =$ 0.019 $+$ 0.07 $=$ 0.089, $\hat{SE}_{\hat{\beta}_1 + \hat{\beta}_3}$ = \ldots not in the regression output!

```
Accessing Var [\hat{\beta}]
```

```
> m<-lm(reg ~ treat combined+v08+ treat combined*v08, data=d)
> vc<-vcov(m)
> vc
                      (Intercept) treat_combined v08 treat_combined:v08
(Intercept) 3.112614e-05 -3.112614e-05 -3.112614e-05
treat_combined -3.112614e-05 6.258680e-05 3.112614e-05 -6.258680e-05
v08 -3.112614e-05 3.112614e-05 6.219516e-04 -6.219516e-04<br>treat combined:v08 3.112614e-05 -6.258680e-05 -6.219516e-04 - 1.228412e-03
treat_combined:v08 3.112614e-05 -6.258680e-05 -6.219516e-04> varb1<-vc["treat_combined","treat_combined"]
> varb3<-vc["treat_combined:v08","treat_combined:v08"]
> covb1b3<-vc["treat_combined", "treat_combined:v08"]
> seb1b3<-sqrt(varb1+varb3+2*covb1b3)
> seb1b3
[1] 0.03414418
> ##95% CI
> lb<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])-2*seb1b3
> ub<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])+2*seb1b3
> 1htreat_combined
    0.01731124
> ub
treat_combined
      0.153888
```
With robust standard errors

```
> vc2<-vcovHC(m, type="HC1")
> varb1<-vc2["treat_combined","treat_combined"]
> varb3<-vc2["treat_combined:v08","treat_combined:v08"]
> covb1b3<-vc2["treat_combined", "treat_combined:v08"]
> seb1b3<-sqrt(varb1+varb3+2*covb1b3)
> seb1b3
[1] 0.05137446
> ##95% CI
> lb<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])-2*seb1b3
> ub<-(m$coefficients["treat_combined"]+m$coefficients["treat_combined:v08"])+2*seb1b3
> 1<sub>b</sub>treat_combined
   -0.01714931
> ub
treat_combined
     0.1883485
```
Plotting Results

Coefficient Plots (Often better than regression tables!)

```
> coefs<-c(m$coefficients["treat_combined"], m$coefficients["treat_combined"]+
m$coefficients["treat_combined:v08"], m$coefficients["treat_combined:v08"])
> ses<-c(sqrt(varb1), seb1b3, sqrt(varb3))
> res<-cbind.data.frame(coefs=coefs, ses=ses)
> res$lb<-coefs-2*ses
> res$ub<-coefs+2*ses
>
>
> pdf(file="/Users/jonathanmummolo/Dropbox/Teaching/150C -
2017/150C2017/slides/Midterm Review/gerber_plot.pdf")
> par(mar=c(4, 8, 4, 4))
> y.axis<-length(coefs):1
> plot(res$coefs*100, y.axis, pch=19, cex=1, main="Effects of GOTV Letters by V
ote Status in 2008", xlim=c(min(res$lb)*100, max(res$ub)*100), axes=F,
xlab="Treatment Effect (Percentage Points)", ylab="")
> segments(res$lb*100, y.axis, res$ub*100, y.axis)
> abline(v=0, lty=2)
> axis(1, at=seq(-100, 100, by=2))> axis(2, at=y.axis, labels=c("Did not Vote 2008", "Voted 2008", "Difference"), las=2)
> dev.off()
```
[Example](#page-77-0)

Estimates, Gerber et al. (2015)

Effects of GOTV Letters by Vote Status in 2008

Treatment Effect (Percentage Points)

What if we interacted treatment with years since release from prison (a continuous variable)? What is the SE of the marginal effect?

What if we interacted treatment with years since release from prison (a continuous variable)? What is the SE of the marginal effect?

$$
\hat{SE}_{\hat{\beta}_1+\hat{\beta}_3} = \sqrt{\hat{Var}[\hat{\beta}_1] + X^2 \hat{Var}[\hat{\beta}_3] + 2 * X * \hat{cov}[\hat{\beta}_1, \hat{\beta}_3]}
$$

What if we interacted treatment with years since release from prison (a continuous variable)? What is the SE of the marginal effect?

$$
\hat{SE}_{\hat{\beta}_1+\hat{\beta}_3} = \sqrt{\hat{Var}[\hat{\beta}_1] + X^2 \hat{Var}[\hat{\beta}_3] + 2 * X * \hat{cov}[\hat{\beta}_1, \hat{\beta}_3]}
$$

Since *X* now takes many values besides zero and 1, the *SE* will often depend on the value of *X* as well!

```
> coeftest(m, vcov.=vc2)
t test of coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0631789 0.0093177 6.7805 1.304e-11 ***<br>treat combined 0.0480999 0.0149249 3.2228 0.001276 **
treat_combined 0.0480999 0.0149249 3.2228 0.001276 **
                                -0.0031440 0.0045173 -0.6960 0.486455
treat combined:timesincerelease -0.0167266 0.0070551 -2.3709 0.017776 *---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
```

```
> summary(d$timesincerelease)
 Min. 1st Qu. Median Mean 3rd Qu. Max.<br>0 252 1 014 1 771 1 808 2 618 3 459
       1.014 1.771 1.808 2.618
 x.vals<-seq(min(d$timesincerelease)-10, max(d$timesincerelease)+10, length=100)
> varb1<-vc2["treat_combined","treat_combined"]
> varb3<-vc2["treat_combined:timesincerelease", "treat_combined:timesincerelease"]
> covb1b3<-vc2["treat_combined:timesincerelease", "treat_combined"]
> seb1b3<-sqrt(varb1 + x.valsˆ2*varb3 + 2*x.vals*covb1b3)
> seb1b3
  [1] 0.082606417 0.080957281 0.079308340 0.077659605 0.076011090 0.074362810 0.072714780
  [8] 0.071067018 0.069419543 0.067772376 0.066125540 0.064479061 0.062832966 0.061187286
 [15] 0.059542056 0.057897314 0.056253104 0.054609472 0.052966474 0.051324169 0.049682626
 [22] 0.048041924 0.046402152 0.044763412 0.043125821 0.041489516 0.039854656 0.038221424
 [29] 0.036590041 0.034960763 0.033333901 0.031709825 0.030088988 0.028471941 0.026859371
 [36] 0.025252134 0.023651317 0.022058319 0.020474964 0.018903677 0.017347735 0.015811670
 [43] 0.014301889 0.012827674 0.011402829 0.010048378 0.008796896 0.007698763 0.006828369
 [50] 0.006281113 0.006143959 0.006443150 0.007123919 0.008090510 0.009253788 0.010548882
 [57] 0.011932951 0.013378409 0.014867361 0.016387957 0.017932148 0.019494327 0.021070495
 [64] 0.022657733 0.024253866 0.025857248 0.027466609 0.029080957 0.030699505 0.032321622
 [71] 0.033946796 0.035574609 0.037204713 0.038836821 0.040470690 0.042106116 0.043742922
 [78] 0.045380961 0.047020103 0.048660237 0.050301266 0.051943104 0.053585679 0.055228923
 [85] 0.056872778 0.058517194 0.060162125 0.061807529 0.063453369 0.065099612 0.066746229
 [92] 0.068393193 0.070040478 0.071688063 0.073335929 0.074984055 0.076632425 0.078281025
 [99] 0.079929839 0.081578855
```
Estimates, Gerber et al. (2015)

Effect of GOTV Letter by Years Since Prison Release

Years Since Release

Where Do We Actually Have Data?

Effect of GOTV Letter by Years Since Prison Release

Years Since Release

Where Do We Actually Have Data?

Effect of GOTV Letter by Years Since Prison Release

Years Since Release

Restrict Inference to Region With Data to Avoid Extrapolation/Model Dependence

Years Since Release

• Implicit in the linear multiplicative model: the marginal effect of *D*|*X* is *linear*

- • Implicit in the linear multiplicative model: the marginal effect of *D*|*X* is *linear*
- $\theta_1 + \beta_3 X$ is the equation of a line

- **•** Implicit in the linear multiplicative model: the marginal effect of *D*|*X* is *linear*
- $\theta_1 + \beta_3 X$ is the equation of a line
- Not a problem when X is discrete. No smoothing required; simply estimate average effect of *D* at each discrete value of *X*

- **•** Implicit in the linear multiplicative model: the marginal effect of *D*|*X* is *linear*
- $\theta_1 + \beta_3 X$ is the equation of a line
- Not a problem when *X* is discrete. No smoothing required; simply estimate average effect of *D* at each discrete value of *X*
- When *X* is continuous, several problems can arise!

Continuous Interactions

The LIE assumption is very restrictive. For example, does not allow effect of *D* to be large when *X* is low, small when *X* is medium, and large again when *X* is high.

Continuous Interactions

- The LIE assumption is very restrictive. For example, does not allow effect of *D* to be large when *X* is low, small when *X* is medium, and large again when *X* is high.
- We can use flexible estimators to allow for this and similar possibilities

- • Problem 1: Nonlinearity
	- Simplest solution: bin up the data

- • Simplest solution: bin up the data
- Create low, medium and high bins of *X*, interact *D* with dummy variables for each bin

- • Simplest solution: bin up the data
- Create low, medium and high bins of *X*, interact *D* with dummy variables for each bin
- Allows effect of D to vary across those ranges. (Can use more bins if you like)

- • Simplest solution: bin up the data
- Create low, medium and high bins of *X*, interact *D* with dummy variables for each bin
- Allows effect of D to vary across those ranges. (Can use more bins if you like)
- Poor overlap between *D* and *X*

- • Simplest solution: bin up the data
- Create low, medium and high bins of *X*, interact *D* with dummy variables for each bin
- Allows effect of D to vary across those ranges. (Can use more bins if you like)
- Poor overlap between *D* and *X*
	- Leads to unintentional extrapolation/interpolation, fragile and model-dependent results

• Problem 1: Nonlinearity

- Simplest solution: bin up the data
- Create low, medium and high bins of *X*, interact *D* with dummy variables for each bin
- Allows effect of D to vary across those ranges. (Can use more bins if you like)

Poor overlap between *D* and *X*

- Leads to unintentional extrapolation/interpolation, fragile and model-dependent results
- Look at the data! Plot joint distributions, plot marginal effect against distribution, generate cross tabs, etc.

Problem 1: Nonlinearity

Figure 2 The Marginal Effect of Temporally Proximate Presidential Elections on the Effective Number of Electoral Parties

Problem 1: Nonlinearity (Clark and Golder, 2006)

Problem 1: Nonlinearity (Clark and Golder, 2006)

Problem 2: Extrapolation (Chapman, 2009)

Note: Dashed lines give 95 percent confidence interval.

FIGURE 2. Marginal effect of UN authorization by affinity with the Security Council

Problem 2: Extrapolation (Chapman, 2009)

Problem 2: Extrapolation (Chapman, 2009)

[The LIE Assumption](#page-106-0) \mathbb{C} is a ideology of \mathbb{C} in the correction \mathbb{C} is a ideology \mathbb{C} in the correction \mathbb{C} is a ideology of \mathbb{C} in the correction of \mathbb{C} is a ideology of \mathbb{C} in the co

Problem 2: Extrapolation Part 2 (Nyhan and Reifler, 2010) R 2 - Extrapolation Fart ϵ (ivyitan and γ) and the set of * p \0.10, ** p\0.05, *** p\0.01 (two-sided)

Fig. 1 Effect of correction on WMD misperception. Estimated marginal effect by ideology: fall 2005

Problem 2: Extrapolation Part 2 (Nyhan and Reifler, 2010)

Where do we have data?

```
> dim(d)
[1] 130 13
> table(d$iraqcorr, d$ideolcen)##7 point scale
  Very liberal Liberal Somewhat left of center Centrist Somewhat right of center Conservative
 0 2 21 10 18 10 10 5
 1 3 18 8 17 9 5
  Very conservative
 0 4
 1 0
```
[The LIE Assumption](#page-108-0)

Problem 2: Extrapolation Part 2 (Nyhan and Reifler, 2010)

[The LIE Assumption](#page-109-0)

Problem 3: Interpolation (Malesky et al., 2012)

[The LIE Assumption](#page-110-0)

Problem 3: Interpolation (Malesky et al., 2012)

• Multiplicative Interaction Models: useful for estimating heterogeneity in treatment effects

- Multiplicative Interaction Models: useful for estimating heterogeneity in treatment effects
- Marginal effect of treatment now hinges on moderator's value, so interpretation of model output more complicated

- Multiplicative Interaction Models: useful for estimating heterogeneity in treatment effects
- Marginal effect of treatment now hinges on moderator's value, so interpretation of model output more complicated
- Be careful with continuous moderators: modeling assumptions and data overlap affect results

- Multiplicative Interaction Models: useful for estimating heterogeneity in treatment effects
- Marginal effect of treatment now hinges on moderator's value, so interpretation of model output more complicated
- Be careful with continuous moderators: modeling assumptions and data overlap affect results
- Look at the data, look at the data, look at the data