150C Causal Inference Panel Methods

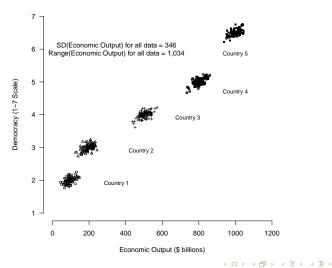
Jonathan Mummolo

Stanford

3

E + 4 E +

Unobserved Group Effects



Jonathan Mummolo (Stanford)

2 / 59

Outline

2 Unobserved Effects Model and Pooled OLS

3 Fixed Effects Regression

4 Modeling Time

5 Modeling Dynamic Effects

Panel Setup

Panel Setup

- Let y and x ≡ (x₁, x₂, ..., x_K) be observable random variables and c be an unobservable random variable
- We are interested in the partial effects of variable x_j in the population regression function

$$E[y|x_1, x_2, ..., x_K, c]$$

- We observe a sample of *i* = 1, 2, ..., *N* cross-sectional units for *t* = 1, 2, ... *T* time periods (a balanced panel)
 - For each unit *i*, we denote the observable variables for all time periods as {(*y_{it}*, **x**_{*it*}) : *t* = 1, 2, ..., *T*}
 - $\mathbf{x}_{it} \equiv (x_{it1}, x_{it2}, ..., x_{itK})$ is a $1 \times K$ vector
- Typically assume that cross-sectional units are i.i.d. draws from the population: {y_i, x_i, c_i}^N_{i=1} ~ i.i.d. (cross-sectional independence)

•
$$\mathbf{y}_i \equiv (y_{i1}, y_{i2}, ..., y_{iT})'$$
 and $\mathbf{x}_i \equiv (\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{iT})$

• Consider asymptotic properties with ${\mathcal T}$ fixed and $N o \infty$

イロト 不得下 イヨト イヨト

Panel Setup

Panel Setup

Single unit:

$$\mathbf{y}_{i} = \begin{pmatrix} y_{i1} \\ \vdots \\ y_{it} \\ \vdots \\ y_{iT} \end{pmatrix}_{T \times 1} \qquad \mathbf{X}_{i} = \begin{pmatrix} x_{i,1,1} & x_{i,1,2} & x_{i,1,j} & \cdots & x_{i,1,K} \\ \vdots & \vdots & \vdots & \vdots \\ x_{i,t,1} & x_{i,t,2} & x_{i,t,j} & \cdots & x_{i,t,K} \\ \vdots & \vdots & \vdots & \vdots \\ x_{i,T,1} & x_{i,T,2} & x_{i,T,j} & \cdots & x_{i,T,K} \end{pmatrix}_{T \times K}$$

Panel with all units:

$$\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_i \\ \vdots \\ \mathbf{y}_N \end{pmatrix}_{NT \times 1} \qquad \mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_i \\ \vdots \\ \mathbf{X}_N \end{pmatrix}_{NT \times K}$$

э

Outline

Panel Setup

2 Unobserved Effects Model and Pooled OLS

3 Fixed Effects Regression

4 Modeling Time

5 Modeling Dynamic Effects

ヨト イヨト

Unobserved Effects Model: Farm Output

• For a randomly drawn cross-sectional unit *i*, the model is given by

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

- y_{it}: output of farm *i* in year *t*
- \mathbf{x}_{it} : $1 \times K$ vector of variable inputs for farm *i* in year *t*, such as labor, fertilizer, etc. plus an intercept
- β : $K \times 1$ vector of marginal effects of variable inputs
- c_i: farm effect, i.e. the sum of all time-invariant inputs known to farmer *i* (but unobserved for the researcher), such as soil quality, managerial ability, etc.
 - often called: unobserved effect, unobserved heterogeneity, etc.
- ε_{it} : time-varying unobserved inputs, such as rainfall, unknown to the farmer at the time the decision on the variable inputs \mathbf{x}_{it} is made
 - often called: idiosyncratic error
- What happens when we regress y_{it} on x_{it}?

イロト イポト イヨト イヨト

Pooled OLS

• When we ignore the panel structure and regress y_{it} on \mathbf{x}_{it} we get

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \qquad t = 1, 2, ..., T$$

with composite error $v_{it} \equiv c_i + \varepsilon_{it}$

• Main assumption to obtain consistent estimates for β is:

Pooled OLS

• When we ignore the panel structure and regress y_{it} on \mathbf{x}_{it} we get

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \qquad t = 1, 2, ..., T$$

with composite error $v_{it} \equiv c_i + \varepsilon_{it}$

• Main assumption to obtain consistent estimates for β is:

- $E[v_{it}|\mathbf{x}_{i1},\mathbf{x}_{i2},...,\mathbf{x}_{iT}] = E[v_{it}|\mathbf{x}_{it}] = 0$ for t = 1, 2, ..., T
 - **x**_{it} are **strictly** exogenous: the composite error *v*_{it} in each time period is uncorrelated with the past, current, and future regressors
 - But: labour input \mathbf{x}_{it} likely depends on soil quality c_i and so we have omitted variable bias and $\hat{\boldsymbol{\beta}}$ is not consistent
- No correlation between **x**_{it} and v_{it} implies no correlation between unobserved effect c_i and **x**_{it} for all t
 - Violations are common: whenever we omit a time-constant variable that is correlated with the regressors

ヘロト 人間 とくほ とくほん

Unobserved Effects Model: Program Evaluation

• Program evaluation model:

$$y_{it} = prog_{it} \beta + c_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

- y_{it}: log wage of individual i in year t
- prog_{it}: indicator coded 1 if individual *i* participants in training program at *t* and 0 otherwise
- β : effect of program
- c_i: sum of all time-invariant unobserved characteristics that affect wages, such as ability, etc.
- What happens when we regress y_{it} on prog_{it}?

Unobserved Effects Model: Program Evaluation

• Program evaluation model:

$$y_{it} = prog_{it} \beta + c_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

- y_{it}: log wage of individual i in year t
- prog_{it}: indicator coded 1 if individual *i* participants in training program at *t* and 0 otherwise
- β : effect of program
- c_i: sum of all time-invariant unobserved characteristics that affect wages, such as ability, etc.
- What happens when we regress y_{it} on $prog_{it}$? $\hat{\beta}$ not consistent since $prog_{it}$ is likely correlated with c_i (e.g. ability)
- Always ask: Is there a time-constant unobserved variable (*c_i*) that is correlated with the regressors? If yes, pooled OLS is problematic
- Additional problem: v_{it} ≡ c_i + ε_{it} are serially correlated for same i since c_i is present in each t and thus pooled OLS standard errors are invalid

イロト イポト イヨト イヨト

Outline

Panel Setup

2 Unobserved Effects Model and Pooled OLS

3 Fixed Effects Regression

4 Modeling Time

5 Modeling Dynamic Effects

글 🕨 🖌 글 🕨

Fixed Effect Regression

• Our unobserved effects model is:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

• If we have data on multiple time periods, we can think of c_i as fixed effects or "nuisance parameters" to be estimated

ヨト イヨト

Fixed Effects Regression

Estimating a regression with the time-demeaned variables $\ddot{y}_{it} \equiv y_{it} - \bar{y}_i$ and $\ddot{\mathbf{x}}_{it} \equiv \mathbf{x}_{it} - \bar{\mathbf{x}}_i$ is numerically equivalent to a regression of y_{it} on \mathbf{x}_{it} and unit specific dummy variables.

Fixed effects estimator is often called the within estimator because it only uses the time variation within each cross-sectional unit.

Even better, the regression with the time-demeaned variables is consistent for β even when $Cov[\mathbf{x}_{it}, c_i] \neq 0$, because time-demeaning eliminates the unobserved effects:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + \varepsilon_{it}$$

$$\bar{y}_i = \bar{\mathbf{x}}_i \boldsymbol{\beta} + c_i + \bar{\varepsilon}_i$$

$$(y_{it} - \bar{y}_i) = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)\boldsymbol{\beta} + (c_i - c_i) + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

$$\ddot{y}_{it} = \ddot{\mathbf{x}}_{it}\boldsymbol{\beta} + \ddot{\varepsilon}_{it}$$

Fixed Effects Regression: Main Results

- Identification assumptions:
 - **1** $E[\varepsilon_{it}|\mathbf{x}_{i1},\mathbf{x}_{i2},...,\mathbf{x}_{iT},c_i] = 0, t = 1,2,...,T$
 - regressors are strictly exogenous conditional on the unobserved effect
 - allows **x**_{it} to be arbitrarily related to c_i

I regressors vary over time for at least some i and are not collinear

- Fixed effects estimator:
 - **1** Demean and regress \ddot{y}_{it} on \ddot{x}_{it} (need to correct degrees of freedom)
 - **2** Regress y_{it} on \mathbf{x}_{it} and unit dummies (dummy variable regression)
 - 8 Regress y_{it} on x_{it} with canned fixed effects routine
 - R: plm(y~x , model = within, data = data)
- Properties (under assumptions 1-2):
 - $\hat{\beta}_{FE}$ is consistent: $\lim_{N \to \infty} \hat{\beta}_{FE,N} = \beta$
 - $\hat{oldsymbol{eta}}_{FE}$ also unbiased conditional on ${\sf X}$

Fixed Effects Regression: Main Issues

• Inference:

- Standard errors have to be "clustered" by panel unit (e.g. farm) to allow correlation in the ε_{it} 's for the same *i*.
 - R: coeftest(mod, vcov=function(x) vcovHC(x, cluster="group", type="HC1"))
- Yields valid inference as long as number of clusters is reasonably large
- Typically we care about β , but unit fixed effects c_i could be of interest
 - plm routine demeans the data before running the regression and therefore does not estimate \hat{c}_i

Example: Direct Democracy and Naturalizations

- Do minorities fare worse under direct democracy than under representative democracy?
- Hainmueller and Hangartner (2016, AJPS) examine data on naturalization requests of immigrants in Switzerland, where municipalities vote on naturalization applications in:
 - referendums (direct democracy)
 - elected municipality councils (representative democracy)
- Annual panel data from 1,400 municipalities for the 1991-2009 period
 - y_{it}: naturalization rate =
 # naturalizations_{it} / eligible foreign population _{it-1}
 - x_{it}: 1 if municipality used representative democracy, 0 if municipality used direct democracy in year t

イロト イポト イヨト イヨト

Fixed Effects Regression

Naturalization Panel Data Long Format

<pre>> d <- read.dta("Swiss_Panel_long.dta")</pre>						
> print(d[30:40,],digits=2)						
muniID	muni_	_name	year	nat_rate	repdem	
30 2	Affoltern	Α.Α.	2001	3.21	0	
31 2	Affoltern	Α.Α.	2002	4.64	0	
32 2	Affoltern	Α.Α.	2003	4.84	0	
33 2	Affoltern	Α.Α.	2004	5.62	0	
34 2	Affoltern	Α.Α.	2005	4.39	0	
35 2	Affoltern	Α.Α.	2006	8.12	1	
36 2	Affoltern	Α.Α.	2007	7.07	1	
37 2	Affoltern	Α.Α.	2008	8.98	1	
38 2	Affoltern	Α.Α.	2009	6.12	1	
39 3	Bonstetten		1991	0.83	0	
40 3	Bonste	etten	1992	0.84	0	

글 🕨 🖌 글 🕨

Pooled OLS

```
> summary(lm(nat_rate~repdem,data=d))
```

```
Call:

lm(formula = nat_rate ~ repdem, data = d)

Residuals:

Min 1Q Median 3Q Max

-4.726 -2.223 -1.523 1.411 21.915

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.22268 0.06904 32.19 <2e-16 ***

repdem 2.50332 0.12907 19.39 <2e-16 ***
```

3

Fixed Effects Regression

Time-Demeaning for Fixed Effects: $y_{it} \rightarrow \ddot{y}_{it}$

```
> library(plyr)
> d <- ddply(d, .(muniID), transform,</pre>
+
                          nat rate demean = nat rate - mean(nat rate).
                                          = mean(nat rate).
                          nat rate mean
+
                          repdem_demean
                                          = repdem - mean(repdem))
+
>
 print(d[20:38.
>
        c("muniID", "muni_name", "year", "nat_rate", "nat_rate_mean", "nat_rate_demean", "repdem", "repdem_demean")
        ],digits=2)
+
   muniTD
               muni name year nat rate nat rate mean nat rate demean repdem repdem demean
20
        2 Affoltern A.A. 1991
                                   0.22
                                                   3.6
                                                                  -3.38
                                                                                        -0.21
                                                                             0
21
                                   0.95
                                                   3.6
                                                                  -2.65
                                                                                        -0.21
        2 Affoltern A.A. 1992
                                                                             0
22
        2 Affoltern A.A. 1993
                                  1.05
                                                   3.6
                                                                 -2.55
                                                                                       -0.21
23
        2 Affoltern A.A. 1994
                                   0.83
                                                   3.6
                                                                 -2.76
                                                                                       -0.21
        2 Affoltern A.A. 1995
                                   2.00
                                                   3.6
                                                                 -1.59
                                                                                       -0.21
24
                                                                             0
25
        2 Affoltern A.A. 1996
                                   1.78
                                                   3.6
                                                                 -1.82
                                                                             0
                                                                                       -0.21
26
        2 Affoltern A.A. 1997
                                  1.86
                                                   3.6
                                                                  -1.73
                                                                             0
                                                                                       -0.21
27
        2 Affoltern A.A. 1998
                                   2.05
                                                   3.6
                                                                  -1.54
                                                                                       -0.21
                                                                             0
28
                                   2.40
                                                   3.6
                                                                  -1.19
                                                                                       -0.21
        2 Affoltern A.A. 1999
                                                                             0
29
        2 Affoltern A.A. 2000
                                   2.20
                                                   3.6
                                                                  -1.40
                                                                             0
                                                                                       -0.21
30
        2 Affoltern A.A. 2001
                                   3.21
                                                   3.6
                                                                  -0.39
                                                                                       -0.21
                                                                             0
31
                                   4.64
                                                   3.6
                                                                  1.04
                                                                                        -0.21
        2 Affoltern A.A. 2002
                                                                             0
32
        2 Affoltern A.A. 2003
                                   4.84
                                                   3.6
                                                                  1.25
                                                                             0
                                                                                        -0.21
33
        2 Affoltern A.A. 2004
                                   5.62
                                                   3.6
                                                                  2.03
                                                                             0
                                                                                        -0.21
34
        2 Affoltern A.A. 2005
                                   4.39
                                                   3.6
                                                                  0.79
                                                                             0
                                                                                        -0.21
35
        2 Affoltern A.A. 2006
                                   8.12
                                                   3.6
                                                                  4.52
                                                                             1
                                                                                        0.79
36
        2 Affoltern A.A. 2007
                                   7.07
                                                   3.6
                                                                   3.47
                                                                             1
                                                                                        0.79
37
                                   8.98
                                                                  5.38
        2 Affoltern A.A. 2008
                                                   3.6
                                                                             1
                                                                                        0.79
38
        2 Affoltern A.A. 2009
                                   6.12
                                                                   2.52
                                                                             1
                                                                                         0.79
                                                   3.6
```

Fixed Effects Regression with Demeaned Data

```
> summary(lm(nat_rate_demean~repdem_demean,data=d))
```

```
Call:

lm(formula = nat_rate_demean ~ repdem_demean, data = d)

Residuals:

Min 1Q Median 3Q Max

-8.4712 -2.0883 -0.5978 1.0841 21.3076

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.266e-16 5.279e-02 0.00 1

repdem_demean 3.023e+00 1.293e-01 23.39 <2e-16 ***
```

伺下 イヨト イヨト

Fixed Effects Regression with Canned Routine

Fixed Effects Regression

Fixed Effects Regression with Dummies

> mod_du <- plm(nat_rate~repdem+as.factor(muniID),data=d,model="pooling")
> coeftest(mod_du, vcov=function(x) vcovHC(x, cluster="group", type="HC1"))

t test of coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.5922e+00	4.0068e-02	3.9737e+01	< 2.2e-16 ***
repdem	3.0228e+00	1.9032e-01	1.5883e+01	< 2.2e-16 ***
as.factor(muniID)2	1.3674e+00	1.4249e-08	9.5960e+07	< 2.2e-16 ***
as.factor(muniID)3	1.2923e+00	1.4283e-08	9.0472e+07	< 2.2e-16 ***
as.factor(muniID)9	1.2847e+00	1.3404e-08	9.5837e+07	< 2.2e-16 ***
as.factor(muniID)10	1.2718e+00	1.4182e-08	8.9675e+07	< 2.2e-16 ***
as.factor(muniID)13	3.2655e-01	1.2597e-08	2.5922e+07	< 2.2e-16 ***
as.factor(muniID)25	5.6413e-02	3.0051e-02	1.8772e+00	0.0605523 .
as.factor(muniID)26	3.1257e+00	1.0017e-02	3.1204e+02	< 2.2e-16 ***
as.factor(muniID)29	3.1797e+00	3.0051e-02	1.0581e+02	< 2.2e-16 ***
as.factor(muniID)33	3.2293e+00	NA	NA	NA
as.factor(muniID)34	1.7467e+00	3.0051e-02	5.8123e+01	< 2.2e-16 ***

Applying Fixed Effects

- We can use fixed effects for other data structures to restrict comparisons to within unit variation
 - Matched pairs
 - Twin fixed effects to control for unobserved effects of family background
 - Cluster fixed effects in hierarchical data
 - School fixed effects to control for unobserved effects of school

.

Fixed Effects Regression

Problems that (even) fixed effects do not solve

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

- Where y_{it} is murder rate and x_{it} is police spending per capita
- What happens when we regress y on x and city fixed effects?

Problems that (even) fixed effects do not solve

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

• Where y_{it} is murder rate and x_{it} is police spending per capita

- What happens when we regress y on x and city fixed effects?
 - $\hat{\beta}_{FE}$ inconsistent unless strict exogeneity conditional on c_i holds
 - $E[\varepsilon_{it}|\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{iT}, c_i] = 0, \ t = 1, 2, ..., T$
 - $\bullet\,$ implies $\varepsilon_{\mathit{it}}$ uncorrelated with past, current, and future regressors
- Most common violations:
 - Time-varying omitted variables
 - economic boom leads to more police spending and less murders
 - can include time-varying controls, but avoid post-treatment bias

② Simultaneity

- if city adjusts police based on past murder rate, then spending_{t+1} is correlated with ε_t (since higher ε_t leads to higher murder rate at t)
- strictly exogenous x cannot react to what happens to y in the past or the future!
- Fixed effects do not obviate need for good research design!

Outline

Panel Setup

2 Unobserved Effects Model and Pooled OLS

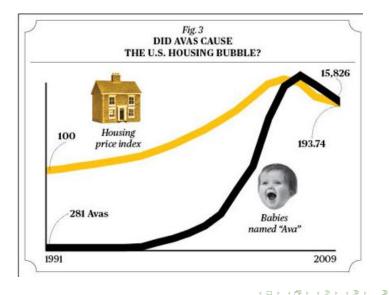
3 Fixed Effects Regression

4 Modeling Time

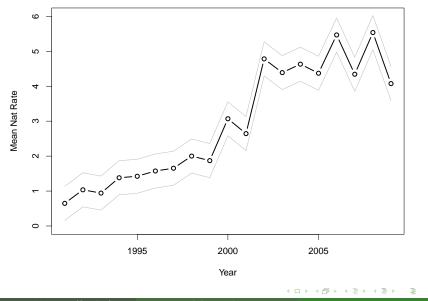
5 Modeling Dynamic Effects

∃ ► < ∃ ►</p>

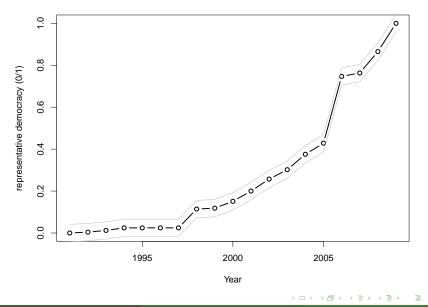
Common Shocks or Causation?



Naturalization Rate Over Time



Representative Democracy Over Time



Adding Time Effects

• Reconsider our unobserved effects model:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

- Fixed effects assumption: $E[\varepsilon_{it}|\mathbf{x}_i, c_i] = 0, t = 1, 2, ..., T$: regressors are strictly exogenous conditional on the unobserved effect
- Typical violation: Common shocks that affect all units in the same way and are correlated with **x**_{it}.
 - Trends in farming technology or climate affect productivity
 - Trends in immigration inflows affect naturalization rates
- We can allow for such common shocks by including time effects into the model

Fixed Effects Regression: Adding Time Effects

• Linear time trend:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + t + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

- Linear time trend common to all units
- Time fixed effects:

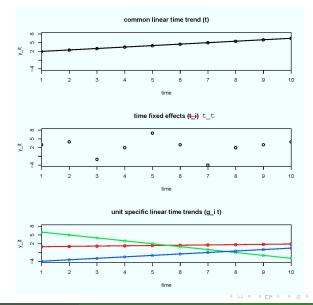
$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + t_t + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

- Common shock in each time period
- Generalized difference-in-differences model
- Unit specific linear time trends:

 $y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + g_i \cdot t + t_t + \varepsilon_{it}, \qquad t = 1, 2, ..., T$

• Linear time trends that vary by unit

Modeling Time Effects



Jonathan Mummolo (Stanford)

Ξ

-

Modeling Time Effects

<pre>> d\$time <- as.numeric(d\$year)</pre>							
<pre>> d[1:21,c("muniID","muni_name","year","time")]</pre>							
muni	muniID muni_name year time				time		
1	1	Aeugst	A.A.	1991	1		
2	1	Aeugst	Α.Α.	1992	2		
3	1	Aeugst	Α.Α.	1993	3		
4	1	Aeugst	Α.Α.	1994	4		
5	1	Aeugst	Α.Α.	1995	5		
6	1	Aeugst	Α.Α.	1996	6		
7	1	Aeugst	Α.Α.	1997	7		
8	1	Aeugst	Α.Α.	1998	8		
9	1	Aeugst					
10	1	Aeugst	Α.Α.	2000	10		
11	1	Aeugst	Α.Α.	2001	11		
12	1	Aeugst	Α.Α.	2002	12		
13	1	Aeugst	Α.Α.	2003	13		
14	1	Aeugst	Α.Α.	2004	14		
15	1	Aeugst	Α.Α.	2005	15		
16	1	Aeugst	Α.Α.	2006	16		
17	1	Aeugst	Α.Α.	2007	17		
18	1	Aeugst	Α.Α.	2008	18		
19	1	Aeugst	Α.Α.	2009	19		
20	2 Af	foltern	A.A.	1991	1		
21	2 A1	foltern	A.A.	1992	2		

3

イロト イポト イヨト イヨト

Fixed Effects Regression: Linear Time Trend

> mod_fe <- plm(nat_rate~repdem+time,data=d,model="within")
> coeftest(mod_fe, vcov=function(x)
vcovHC(x, cluster="group", type="HC1"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|) repdem 0.82479 0.25853 3.1903 0.001431 ** time 0.23137 0.01714 13.4987 < 2.2e-16 ***

Fixed Effects Regression: Year Fixed Effects

> mod_fe <- plm(nat_rate~repdem+year,data=d,model="within")
> coeftest(mod_fe, vcov=function(x) vcovHC(x, cluster="group", type="HC1"))

t test of coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
repdem	1.20366	0.30253	3.9786	7.043e-05	***
year1992	0.38292	0.17197	2.2266	0.02602	*
year1993	0.27898	0.15110	1.8463	0.06492	
year1994	0.70341	0.16712	4.2089	2.617e-05	***
year1995	0.74591	0.17827	4.1841	2.919e-05	***
year1996	0.89693	0.18345	4.8892	1.049e-06	***
year1997	0.97570	0.18661	5.2285	1.788e-07	***
year1998	1.21550	0.22506	5.4007	6.988e-08	***
year1999	1.08051	0.21430	5.0419	4.794e-07	***
year2000	2.23993	0.23968	9.3457	< 2.2e-16	***
year2001	1.75531	0.24790	7.0807	1.662e-12	***
year2002	3.82573	0.32672	11.7096	< 2.2e-16	***
year2003	3.37837	0.32664	10.3428	< 2.2e-16	***
year2004	3.53176	0.34285	10.3012	< 2.2e-16	***
year2005	3.20837	0.31097	10.3171	< 2.2e-16	***
year2006	3.92057	0.39023	10.0468	< 2.2e-16	***
year2007	2.77646	0.36884	7.5276	6.237e-14	***
year2008	3.84780	0.40135	9.5872	< 2.2e-16	***
year2009	2.22388	0.41997	5.2953	1.246e-07	***

ト イヨト イヨト

Unit Specific Time Trends Often Eliminate "Results"

TABLE 5.2.3 Estimated effects of labor regulation on the performance of firms in Indian states									
(1) (2) (3) (4)									
Labor regulation (lagged)	186 (.064)	185 (.051)	104 (.039)	.0002 (.020)					
Log development expenditure per capita		.240 (.128)	.184 (.119)	.241 (.106)					
Log installed electricity capacity per capita	•	.089 (.061)	.082 (.054)	.023 (.033)					
Log state population		.720 (.96)	0.310 (1.192)	-1.419 (2.326)					
Congress majority			0009 (.01)	.020 (.010)					
Hard left majority			050 (.017)	007 (.009)					
Janata majority			.008 (.026)	020 (.033)					
Regional majority			.006 (.009)	.026 (.023)					
State-specific trends Adjusted R ²	No .93	No .93	No .94	Yes .95					

Notes: Adapted from Besley and Burgess (2004), table IV. The table reports regression DD estimates of the effects of labor regulation on productivity. The

"labor regulation increased in states where output was declining anyway"

イロト イポト イヨト イヨト

Fixed Effects Regression: Unit Specific Time Trends

```
> mod_fe <- plm(nat_rate~
repdem+muniID*time+year,data=d,model="within")
> coeftest(mod_fe, vcov=function(x)
vcovHC(x, cluster="group", type="HC1"))
```

```
t test of coefficients:
```

	Estimate	Std. Error	t value	Pr(> t)
repdem	0.9865241	.322868	3.0634545	2.043e-05 ***
muniID2:time	-4.1916e-02	2.0515e-09	-2.0432e+07	< 2.2e-16 ***
muniID3:time	-8.4358e-02	2.1145e-09	-3.9896e+07	< 2.2e-16 ***

Unit Specific Quadratic Time Trends

```
> d$time2 <- d$time^2
> mod_fe <- plm(nat_rate~repdem+
muniID*time+muniID*time^2+year,data=d,model="within")
> coeftest(mod_fe, vcov=function(x)
vcovHC(x, cluster="group", type="HC1"))
```

t test of coefficients:

	Estimate	Std. Error	t value Pr(> t)
repdem	1.22272779	.3804359	3.212323 1.023e-05 ***
muniID2:time	1.37177084	1.034e-09	.0344+07 < 3.4e-16 ***
muniID2:time2	-0.07068432	2.2034e-09	-1.234e+07 < 5.6e-16 ***

• Using fixed effects often removes large amounts of variation from the data

글 🕨 🖌 글 🕨

- Using fixed effects often removes large amounts of variation from the data
- With unit fixed effects, we are left explaining changes in *y* within units over time, after removing all variation *between* units

- Using fixed effects often removes large amounts of variation from the data
- With unit fixed effects, we are left explaining changes in *y* within units over time, after removing all variation *between* units
- With unit and time fixed effects, we are left explaining changes in *y within* units over time *net of common time shocks*

- Using fixed effects often removes large amounts of variation from the data
- With unit fixed effects, we are left explaining changes in *y* within units over time, after removing all variation *between* units
- With unit and time fixed effects, we are left explaining changes in *y within* units over time *net of common time shocks*
- Important to consider realistic counterfactuals when interpreting results, i.e. a "one-unit" or one SD increase in x may no longer be of interest because x never shifts this much within a unit over time

- Using fixed effects often removes large amounts of variation from the data
- With unit fixed effects, we are left explaining changes in *y* within units over time, after removing all variation *between* units
- With unit and time fixed effects, we are left explaining changes in *y within* units over time *net of common time shocks*
- Important to consider realistic counterfactuals when interpreting results, i.e. a "one-unit" or one SD increase in x may no longer be of interest because x never shifts this much within a unit over time
- Could end up extrapolating beyond the coverage in the data, yielding unreliable counterfactual estimates

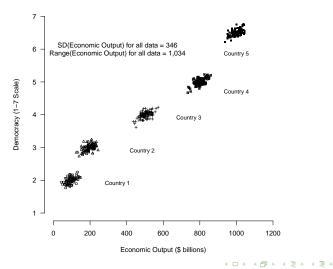
- Using fixed effects often removes large amounts of variation from the data
- With unit fixed effects, we are left explaining changes in *y* within units over time, after removing all variation *between* units
- With unit and time fixed effects, we are left explaining changes in *y within* units over time *net of common time shocks*
- Important to consider realistic counterfactuals when interpreting results, i.e. a "one-unit" or one SD increase in x may no longer be of interest because x never shifts this much within a unit over time
- Could end up extrapolating beyond the coverage in the data, yielding unreliable counterfactual estimates
- More important when treatment is continuous

- Using fixed effects often removes large amounts of variation from the data
- With unit fixed effects, we are left explaining changes in *y* within units over time, after removing all variation *between* units
- With unit and time fixed effects, we are left explaining changes in *y within* units over time *net of common time shocks*
- Important to consider realistic counterfactuals when interpreting results, i.e. a "one-unit" or one SD increase in x may no longer be of interest because x never shifts this much within a unit over time
- Could end up extrapolating beyond the coverage in the data, yielding unreliable counterfactual estimates
- More important when treatment is continuous
- Useful first step: examine (plot, summarize) the demeaned data

- Using fixed effects often removes large amounts of variation from the data
- With unit fixed effects, we are left explaining changes in *y* within units over time, after removing all variation *between* units
- With unit and time fixed effects, we are left explaining changes in *y within* units over time *net of common time shocks*
- Important to consider realistic counterfactuals when interpreting results, i.e. a "one-unit" or one SD increase in x may no longer be of interest because x never shifts this much within a unit over time
- Could end up extrapolating beyond the coverage in the data, yielding unreliable counterfactual estimates
- More important when treatment is continuous
- Useful first step: examine (plot, summarize) the demeaned data
- Also a good way to check functional form assumptions: is the bivariate relationship of interest still linear after conditioning on covariates?

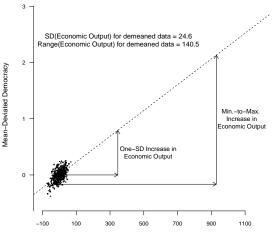
イロト イポト イヨト イヨト

Pooled Data



3

Reduction in Variation



Mean-Deviated Economic Output (\$ billions)

3

イロト イポト イヨト イヨト

Example: Healy and Malhotra (2009)

• Estimates effect of federal disaster relief (\$) on presidential vote share

글 🕨 🖌 글 🕨

Example: Healy and Malhotra (2009)

- Estimates effect of federal disaster relief (\$) on presidential vote share
- Observations on all U.S. counties over several election years

Example: Healy and Malhotra (2009)

- Estimates effect of federal disaster relief (\$) on presidential vote share
- Observations on all U.S. counties over several election years

>	<pre>> head(d[,c("name_state","county","year",</pre>							
";	"all_current_relief","incum_vote")])							
	<pre>name_state county year all_current_relief incum_vote</pre>							
1	AL	AUTAUGA	1988	0.000000	67.12975			
2	AL	AUTAUGA	1992	0.473335	55.92000			
3	AL	AUTAUGA	1996	0.000000	32.52000			
4	AL	AUTAUGA	2000	0.000000	28.72000			
5	AL	AUTAUGA	2004	4.257831	75.67000			
6	AL	BALDWIN	1988	3.323777	72.84960			

Example: Healy and Malhotra (2009)

Pooled OLS Result

```
> summary(lm(incum_vote~all_current_relief, data=d))
```

```
Call:

lm(formula = incum_vote ~ all_current_relief, data = d)

Residuals:

Min 1Q Median 3Q Max

-51.761 -8.551 -0.212 8.618 45.258

Coefficients:

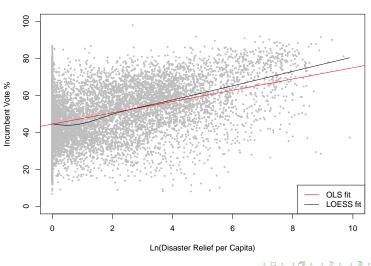
Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.55219 0.11849 376.00 <2e-16 ***

all_current_relief 3.04719 0.05529 55.12 <2e-16 ***
```

• • = • • = •

Bivariate Plot



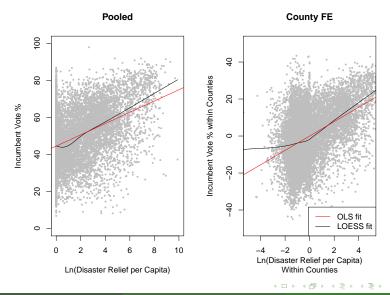
Pooled

Ξ

Example: Healy and Malhotra (2009)

County Fixed Effects

County FE



Jonathan Mummolo (Stanford)

44 / 59

What About Multi-Way Fixed Effects?

• How do we visualize data with multi-way fixed effects?

ヨト イヨト

What About Multi-Way Fixed Effects?

- How do we visualize data with multi-way fixed effects?
- Can "residualize" the data and then plot

What About Multi-Way Fixed Effects?

- How do we visualize data with multi-way fixed effects?
- Can "residualize" the data and then plot
- Useful exercise with all multivariate regressions

Frisch-Waugh-Lovell Theorem

Suppose we are interested in estimating β_1 in the following model:

$$y = \alpha + \beta_1 x + \delta_2 z_1 + \beta_3 z_2 + \dots + \beta_k z_k + \varepsilon$$

where x is the treatment and z_1 - z_k are a set of control variables. β_1 can also be estimated through the following multi-step process.

Image: A Image: A

Frisch-Waugh-Lovell Theorem

Suppose we are interested in estimating β_1 in the following model:

$$y = \alpha + \beta_1 x + \delta_2 z_1 + \beta_3 z_2 + \dots + \beta_k z_k + \varepsilon$$

where x is the treatment and z_1 - z_k are a set of control variables. β_1 can also be estimated through the following multi-step process.

1. Regress x on an intercept and z_1 - z_k and store the residuals, $r_{xz} = (x - \hat{x}_{xz})$

イロト イポト イヨト イヨト

Frisch-Waugh-Lovell Theorem

Suppose we are interested in estimating β_1 in the following model:

$$y = \alpha + \beta_1 x + \delta_2 z_1 + \beta_3 z_2 + \dots + \beta_k z_k + \varepsilon$$

where x is the treatment and z_1 - z_k are a set of control variables. β_1 can also be estimated through the following multi-step process.

- 1. Regress x on an intercept and z_1 - z_k and store the residuals, $r_{xz} = (x \hat{x}_{xz})$
- 2. Regress y on an intercept and z_1 - z_k and store the residuals, $r_{yz} = (y \hat{y}_{yz})$

Frisch-Waugh-Lovell Theorem

Suppose we are interested in estimating β_1 in the following model:

$$y = \alpha + \beta_1 x + \delta_2 z_1 + \beta_3 z_2 + \dots + \beta_k z_k + \varepsilon$$

where x is the treatment and z_1 - z_k are a set of control variables. β_1 can also be estimated through the following multi-step process.

- 1. Regress x on an intercept and z_1 - z_k and store the residuals, $r_{xz} = (x \hat{x}_{xz})$
- 2. Regress y on an intercept and z_1 - z_k and store the residuals, $r_{yz} = (y \hat{y}_{yz})$

3. Estimate
$$r_{yz} = \theta + \beta_1^* r_{xz} + v$$

Frisch-Waugh-Lovell Theorem

Suppose we are interested in estimating β_1 in the following model:

$$y = \alpha + \beta_1 x + \delta_2 z_1 + \beta_3 z_2 + \dots + \beta_k z_k + \varepsilon$$

where x is the treatment and z_1 - z_k are a set of control variables. β_1 can also be estimated through the following multi-step process.

- 1. Regress x on an intercept and z_1 - z_k and store the residuals, $r_{xz} = (x \hat{x}_{xz})$
- 2. Regress y on an intercept and z_1 - z_k and store the residuals, $r_{yz} = (y \hat{y}_{yz})$

3. Estimate
$$r_{yz} = \theta + \beta_1^* r_{xz} + v$$

Then $\hat{\beta}_1^* = \hat{\beta}_1$

医静脉 医原体 医原体

Frisch-Waugh-Lovell Theorem

Suppose we are interested in estimating β_1 in the following model:

$$y = \alpha + \beta_1 x + \delta_2 z_1 + \beta_3 z_2 + \dots + \beta_k z_k + \varepsilon$$

where x is the treatment and z_1 - z_k are a set of control variables. β_1 can also be estimated through the following multi-step process.

- 1. Regress x on an intercept and z_1 - z_k and store the residuals, $r_{xz} = (x \hat{x}_{xz})$
- 2. Regress y on an intercept and z_1 - z_k and store the residuals, $r_{yz} = (y \hat{y}_{yz})$

3. Estimate
$$r_{yz} = \theta + \beta_1^* r_{xz} + v$$

Then $\hat{\beta}_1^* = \hat{\beta}_1$

(Intuition: Remove all variation explained by $z_1 - z_k$ that is shared with x. What relationship between x and y remains?)

・ロト ・ 四ト ・ ヨト ・ ヨト …

Frisch-Waugh-Lovell Theorem

Suppose we are interested in estimating β_1 in the following model:

$$y = \alpha + \beta_1 x + \delta_2 z_1 + \beta_3 z_2 + \dots + \beta_k z_k + \varepsilon$$

where x is the treatment and z_1 - z_k are a set of control variables. β_1 can also be estimated through the following multi-step process.

- 1. Regress x on an intercept and z_1 - z_k and store the residuals, $r_{xz} = (x \hat{x}_{xz})$
- 2. Regress y on an intercept and z_1 - z_k and store the residuals, $r_{yz} = (y \hat{y}_{yz})$

3. Estimate
$$r_{yz} = \theta + \beta_1^* r_{xz} + v$$

Then $\hat{\beta}_1^* = \hat{\beta}_1$

(Intuition: Remove all variation explained by $z_1 - z_k$ that is shared with x. What relationship between x and y remains?)

In one-way FE only, equivalent to demeaning the data within each cross-sectional unit

Jonathan Mummolo (Stanford)

Healy and Malhotra (2009)

1. Regress Disaster Relief on an intercept and county and year dummies, and store the residuals, $r_{xz} = (x - \hat{x}_{xz})$

ト イヨト イヨト

Healy and Malhotra (2009)

- 1. Regress Disaster Relief on an intercept and county and year dummies, and store the residuals, $r_{xz} = (x \hat{x}_{xz})$
- 2. Regress Vote Share on an intercept and county and year dummies and store the residuals, $r_{yz} = (y \hat{y}_{yz})$

Healy and Malhotra (2009)

- 1. Regress Disaster Relief on an intercept and county and year dummies, and store the residuals, $r_{xz} = (x \hat{x}_{xz})$
- 2. Regress Vote Share on an intercept and county and year dummies and store the residuals, $r_{yz} = (y \hat{y}_{yz})$

3. Estimate
$$r_{yz} = \theta + \beta_1^* r_{xz} + v$$

County and Year FE

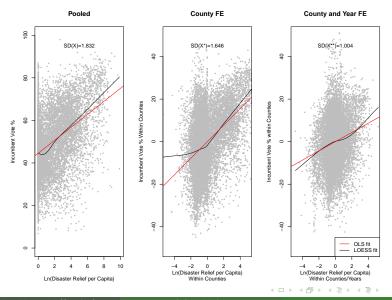
Dummy Model:

```
> m1b<-lm(incum_vote~ all_current_relief+</pre>
factor(fips)+factor(year), data=d)
> summary(m1b)$coefficients[1:5,]
                     Estimate Std. Error
                                              t value
                                                           Pr(>|t|)
(Intercept)
                   59.0045324 5.18832585 11.37255717
                                                       8.039495e-30
all current relief
                    2.1673932 0.09253326 23.42285543 9.099120e-119
factor(fips)1003
                   -2.52180287.33301005-0.34389736
                                                       7.309293e-01
factor(fips)1005
                   -4.1090401 7.33462683 -0.56022484
                                                       5.753362e-01
factor(fips)1007
                    0.1012718 7.33254821
                                           0.01381127
                                                       9.889808e-01
```

Residualized Model:

```
m3b<-lm(all_current_relief~factor(fips)+factor(year), data=d)
m4b<-lm(incum_vote ~factor(fips)+factor(year), data=d)</pre>
```

County and Year FE



Jonathan Mummolo (Stanford)

150C Causal Inference

50 / 59

Interpreting Results

Dummy Model:

- With county and year FE, more reasonable to discuss a one-SD shift in X^{**} = disaster relief after residualizing with respect to county and year dummies
- 1.044 * 2.17 = 2.26 additional points for incumbent using SD of X^{**}
- 1.832 * 2.17 = 3.97 additional points for incumbent using SD of X
- $\frac{2.26}{3.97} = .569$ meaning the substantive impact is cut in half once we consider a plausible shift in X.

イロト イポト イヨト イヨト

Outline

Panel Setup

2 Unobserved Effects Model and Pooled OLS

3 Fixed Effects Regression

4 Modeling Time

Leads and Lags

- Let D_{it} be a binary indicator coded 1 if unit i switched from control to treatment between t and t - 1; 0 otherwise
 - Lags: D_{it-1} : unit switched between t-1 and t-2
 - Leads: D_{it+1} : unit switches between t + 1 and t
- Include lags and leads into the fixed effects model:

$$y_{it} = D_{it+2}\beta_{-2} + D_{it+1}\beta_{-1} + D_{it}\beta_0 + D_{it-1}\beta_1 + D_{it-2}\beta_2 + c_i + \varepsilon_{it}$$

- Interpretation of coefficients:
 - Leads β_{-1} , β_{-2} , etc. test for anticipation effects (should be zero!)
 - Switch β_0 tests for immediate effect
 - Lags β_1 , β_2 , etc. test for long-run effects
 - highest lag dummy can be coded 1 for all post-switch years

(4 個)ト イヨト イヨト

Lags and Leads of Switch to Representative Democracy

> d[970:989,c(1:3,5,12:ncol(d))]

	muniID	year	muni_name	${\tt repdem}$	switcht	lag1	lag2	lag3	lead1	lead2	lead3	lead4	lead5
97	0 220	1991	Hagenbuch	0	0	0	0	0	0	0	0	0	0
97	1 220	1992	Hagenbuch	0	0	0	0	0	0	0	0	0	0
97	2 220	1993	Hagenbuch	0	0	0	0	0	0	0	0	0	0
97	3 220	1994	Hagenbuch	0	0	0	0	0	0	0	0	0	0
97	4 220	1995	Hagenbuch	0	0	0	0	0	0	0	0	0	0
97	5 220	1996	Hagenbuch	0	0	0	0	0	0	0	0	0	0
97	6 220	1997	Hagenbuch	0	0	0	0	0	0	0	0	0	0
97	7 220	1998	Hagenbuch	0	0	0	0	0	0	0	0	0	1
97	8 220	1999	Hagenbuch	0	0	0	0	0	0	0	0	1	0
97	9 220	2000	Hagenbuch	0	0	0	0	0	0	0	1	0	0
98	0 220	2001	Hagenbuch	0	0	0	0	0	0	1	0	0	0
98	1 220	2002	Hagenbuch	0	0	0	0	0	1	0	0	0	0
98	2 220	2003	Hagenbuch	1	1	0	0	0	0	0	0	0	0
98	3 220	2004	Hagenbuch	1	0	1	0	0	0	0	0	0	0
98	4 220	2005	Hagenbuch	1	0	0	1	0	0	0	0	0	0
98	5 220	2006	Hagenbuch	1	0	0	0	1	0	0	0	0	0
98	6 220	2007	Hagenbuch	1	0	0	0	1	0	0	0	0	0
98			Hagenbuch	1	0	0	0	1	0	0	0	0	0
98	8 220	2009	Hagenbuch	1	0	0	0	1	0	0	0	0	0
98	9 224	1991	Pfungen	0	0	0	0	0	0	0	0	0	0

∃ ► < ∃ ►</p>

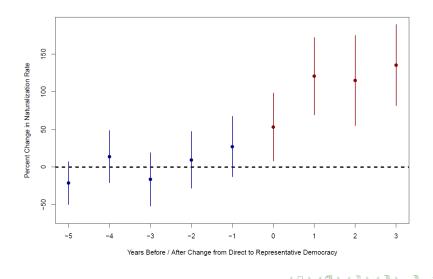
Dynamic Effect of Switching to Representative Democracy

```
> mod_all <- plm(nat_rate~lag3+lag2+lag1+switcht+
lead1+lead2+lead3+lead4+lead5+
+ year,data=d,model="within")
> coeftest(mod_all, vcov=function(x)
vcovHC(x, cluster="group", type="HC1"))
```

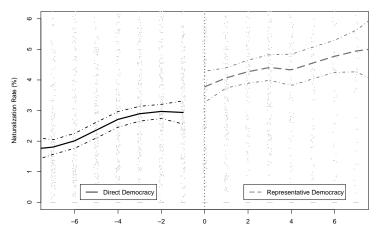
t test of coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
lag3	1.160345	0.506989	2.2887	0.0221442	*
lag2	1.743682	0.538419	3.2385	0.0012105	**
lag1	1.881663	0.487013	3.8637	0.0001133	***
switcht	0.756479	0.427751	1.7685	0.0770463	
lead1	0.213876	0.389191	0.5495	0.5826635	
lead2	0.084368	0.356799	0.2365	0.8130891	
lead3	0.144045	0.318756	0.4519	0.6513661	
lead4	0.075019	0.298425	0.2514	0.8015287	
lead5	-0.094241	0.259448	-0.3632	0.7164439	
year1992	0.385289	0.172172	2.2378	0.0252829	*

Dynamic Effect of Switching to Representative Democracy



Switching Plot



Years Before / After Change from Direct to Representative Democracy

E

Heterogeneous Treatment Effects

- So far we have assumed that the treatment effect is constant across units
- Can allow for heterogeneous treatment effects by including interaction of treatment with other regressors

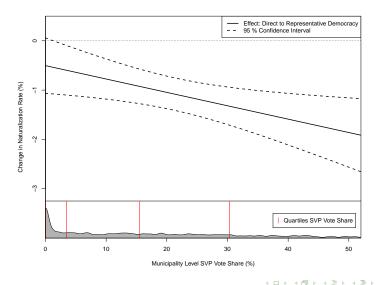
$$\mathbf{y}_{it} = treat_{it} lpha_0 + (treat_{it} \cdot \mathbf{x}_{it}) lpha_1 + \mathbf{x}_{it} oldsymbol{eta} + \mathbf{c}_i + t + arepsilon_{it}, \qquad t = 1, 2, ..., T$$

• Often the treatment is interacted with a time-invariant regressor:

$$y_{it} = treat_{it}\alpha_0 + (treat_{it} \cdot x_i)\alpha_1 + c_i + t + \varepsilon_{it}, \qquad t = 1, 2, ..., T$$

• Note: The lower order term on the time-invariant x_i is collinear with the fixed effects and drops out

Heterogeneous Effect of Direct Democracy



Jonathan Mummolo (Stanford)

59 / 59