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Lancet 2001: negative correlation between coronary heart disease mortality
and level of vitamin C in bloodstream (controlling for age, gender, blood
pressure, diabetes, and smoking)
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Lancet 2002: no effect of vitamin C on mortality in controlled placebo trial
(controlling for nothing)
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Lancet 2003: comparing among individuals with the same age, gender,
blood pressure, diabetes, and smoking, those with higher vitamin C levels
have lower levels of obesity, lower levels of alcohol consumption, are less

likely to grow up in working class, etc.
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Observational Medical Trials

Everything we eat both causes and prevents cancer

@ = One medical study
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Protects against cancer Causes cancer
Relative risk of cancer

SOURCE: Schoenfeld and loannidis, American Journal of Clinical Nutrition

5/103



Observational Studies

@ Randomization forms gold standard for causal inference, because it
balances observed and unobserved confounders

@ Cannot always randomize so we do observational studies, where we
adjust for the observed covariates and hope that unobservables are
balanced

@ Better than hoping: design observational study to approximate an
experiment

o "The planner of an observational study should always ask himself: How
would the study be conducted if it were possible to do it by controlled
experimentation” (Cochran 1965)
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@ What Makes a Good Observational Study?
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The Good, the Bad, and the Ugly

Treatments, Covariates, Outcomes

@ Randomized Experiment: Well-defined treatment, clear distinction
between covariates and outcomes, control of assignment mechanism

@ Better Observational Study: Well-defined treatment, clear distinction
between covariates and outcomes, precise knowledge of assignment
mechanism

e Can convincingly answer the following question: Why do two units who
are identical on measured covariates receive different treatments?

@ Poorer Observational Study: Hard to say when treatment began or
what the treatment really is. Distinction between covariates and
outcomes is blurred, so problems that arise in experiments seem to be
avoided but are in fact just ignored. No precise knowledge of
assignment mechanism.
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The Good, the Bad, and the Ugly

How were treatments assigned?

@ Randomized Experiment: Random assignment

@ Better Observational Study: Assignment is not random, but
circumstances for the study were chosen so that treatment seems
haphazard, or at least not obviously related to potential outcomes
(sometimes we refer to these as natural or quasi-experiments)

@ Poorer Observational Study: No attention given to assignment
process, units self-select into treatment based on potential outcomes
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The Good, the Bad, and the Ugly

What is the problem with purely cross-sectional data?

o Difficult to know what is pre or post treatment.

@ Many important confounders will be affected by the treatment and
including these “bad controls” induces post-treatment bias.

@ But if you do not condition on the confounders that are
post-treatment, then often only left with a limited set of covariates
such as socio-demographics.
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The Good, the Bad, and the Ugly

Were treated and controls comparable?

@ Randomized Experiment: Balance table for observables.

@ Better Observational Study: Balance table for observables. Ideally
sensitivity analysis for unobservables.

@ Poorer Observational Study: No direct assessment of comparability is
presented.
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The Good, the Bad, and the Ugly

Eliminating plausible alternatives to treatment effects?

@ Randomized Experiment: List plausible alternatives and experimental
design includes features that shed light on these alternatives
(e.g. placebos). Report on potential attrition and non-compliance.

@ Better Observational Study: List plausible alternatives and study
design includes features that shed light on these alternatives
(e.g. multiple control groups, longitudinal covariate data, etc.).
Requires more work than in experiment since there are usually many
more alternatives.

@ Poorer Observational Study: Alternatives are mentioned in discussion
section of the paper.
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Good Observational Studies

Design features we can use to handle unobservables:

@ Design comparisons so that unobservables are likely to be balanced
(e.g. sub-samples, groups where treatment assignment was accidental,
etc.)

@ Unobservables may differ, but comparisons that are unaffected by
differences in time-invariant unobservables

@ Instrumental variables, if applied correctly

Multiple control groups that are known to differ on unobservables

Sensitivity analysis and bounds
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Seat Belts on Fatality Rates

Table 1.1 Crashes in FARS 1975-1983 in which the front seat had two occupants, a driver and a
passenger, with one belted, the other unbelted, and one died and one survived.

Driver Not Belted  Belted
Passenger Belted  Not Belted
Driver Died  Passenger Survived 189 153
Driver Survived  Passenger Died 11 363

Evans (1986)
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Immigrant Attributes on Naturalization

Who Gets a Swiss Passport? A Natural Experiment in
Immigrant Discrimination

JENS HAINMUELLER  Massachusetts Institute of Technology
DOMINIK HANGARTNER London School of Economics & University of Zurich

e study discrimination against immigrants using microlevel data from Switzerland, where, until
‘/-‘/ recently, some municipalities used referendums to decide on the citizenship applications of
foreign residents. We show that naturalization decisions vary dramatically with immigrants’
attributes, which we collect from official applicant descriptions that voters received before each referen-
dum. Country of origin determines naturalization success more than any other applicant characteristic,
including language skills, integration status, and economic credentials. The average proportion of “no
votes is about 40% higher for applicants from (the former) Yugoslavia and Turkey compared to observ-
ably similar applicants from richer northern and western European countries. Statistical and taste-based
discrimination contribute to varying naturalization success; the rewards for economic credentials are
higher for applicants fmm disadvantaged ongms and ortgm-based discrimination is much stronger in
more xenophobic municipalities. Moreover, discr 1 against specific immigrant groups respond.
dynamically to changes in the groups’ relative size.
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A known treatment assignment process

C AL, G447, italienische Staatsangehérige, D79 74, ungarischer Staatsangehdriger, Ghirschweg 13,
Gerliswilstrasse 26, 6020 Emmenbriicke 6020 Emmenbriicke

Geburtsort:  Piatrelcina () Geburtsort: Bucsa (H)
Geburtsdatum: 9. Dezember 1939 Geburtsdatum:  14. Mai 1936
Zivilstand: geschieden Zivilstand:  geschieden
Ausbildung:  Volksschule Ausbildung: Volksschule, Lehre als Mineur und Sprengmeister,
Bisherige Tétigkeiten: Mitarbeit auf elterlichem Bauerngut, Zusatzausbildung als Maler
Lingerie-Mitarbeiterin in Hotels isherige Tatigkei B8 itar, selb Maler
Jetzige Tatigkeit:  IV-Rentnerin seit 1997 Jetzige Tatigkeit:  [V-Rentner sait 1987 (Verkehrsunfall)
Arbeilgeber: - Arbeitgeber: -
Einreise in die Schweiz: 15. Oktober 1962 Einreise in die Schweiz: 17. November 1856
Zuzug nach Emmen: 23.September 1970 2uzug nach Emmen: 26. Juni 1991
Hobbys: - Hobbys: Fischen, Pilze sammeiln, Modeliflugzeuge basteln
Steuern: Steuerbares Einkommen Fr. 33900.— Steuern: Steuerbares Einkommen Fr. 28 400.~
Steuerbares Vermégen  Fr. 28000.~ Steuerbares Vermégen Fr.0.-
Kinder; - Kinder: -
Einbiirgerungstaxe: Fr. 123.- Einblirgerungstaxe: Fr. 100~
Einbiirgerungsgebiihr:  Fr. 500.- Einbiirgerungsgebihr:  Fr. 500.—
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Immigrant Attributes on Naturalization

“Official voting leaflets summarizing the applicant
characteristics were sent to all citizens usually about two to
six weeks before each naturalization referendum. Since we
retrieved the voting leaflets from the municipal archives, we
measure the same applicant information from the
leaflets that the citizens observed when they voted on
the citizenship applications. Since most voters simply
draw on the leaflets to decide on the applicants, this design
enables us to greatly minimize potential omitted variable bias
and attribute differences in naturalization outcomes to the
effects of differences in measured applicant characteristics.”
-Hainmueller and Hangartner (2013)
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Persuasive Effect of Endorsement Changes on Labour Vote
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|
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Treated: Read paper that switched to Labour (n=211)

% Labour vote
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|
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Untreated: Did not read paper that switched (n=1382)

20
L

I 1
1992 1997

This figure shows that reading a paper that switched to Labour
is associated with an (15.2 — 6.6 =) 8.6 percentage point shift to
Labour between the 1992 and 1997 UK elections. Paper readership
is measured in the 1996 wave, before the papers switched, or, if
no 1996 interview was conducted, in an earlier wave. Confidence
intervals show one standard error.

Ladd and Lenz (1999)
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Persuasive Effect of Endorsement Changes on Labour

Treatment effect for habitual pre-1997 readers

80
|

-1 Treated: Read paper that switched to Labour (n=83)

% Labour vote
0 40 50 60 TO
1

Untreated: Did not read paper that switched (n=1151)

20

I T 1
1992 1996 1997

Using the hypothetical vote choice question asked in the 1996
wave, this figure shows that the treatment effect only emerges after
1996. Habitual readers are those who read a paper that switched in
every wave in which they were interviewed before the 1997 wave.

Ladd and Lenz (1999)
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© Removing Bias by Conditioning
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Adjustment for Observables in Observational Studies

@ Subclassification

Matching

Propensity Score Methods

Regression
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Smoking and Mortality (Cochran (1968))

DEATH RATES PER 1,000 PERSON-YEARS

TABLE 1

Smoking group Canada U.K. u.s.
Non-smokers 20.2 11.3 135
Cigarettes 20.5 14.1 13.5
Cigars/pipes 355 20.7 17.4
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Smoking and Mortality (Cochran (1968))

MEAN AGES, YEARS

TABLE 2

Smoking group Canada U.K. u.s.
Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7
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Subclassification

To control for differences in age, we would like to compare different
smoking-habit groups with the same age distribution

One possibility is to use subclassification:

o for each country, divide each group into different age subgroups
@ calculate death rates within age subgroups

@ average within age subgroup death rates using fixed weights (e.g.
number of cigarette smokers)
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Subclassification: Example

Death Rates | # Pipe- | # Non-

Pipe Smokers | Smokers | Smokers
Age 20 - 50 15 11 29
Age 50 - 70 35 13 9
Age 4+ 70 50 16 2
Total 40 40

What is the average death rate for Pipe Smokers?
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Subclassification: Example

Death Rates | # Pipe- | # Non-

Pipe Smokers | Smokers | Smokers
Age 20 - 50 15 11 29
Age 50 - 70 35 13 9
Age 4+ 70 50 16 2
Total 40 40

What is the average death rate for Pipe Smokers?
15-(11/40) +35-(13/40) + 50 - (16/40) = 35.5

26 /103



Subclassification: Example

Death Rates | # Pipe- | # Non-

Pipe Smokers | Smokers | Smokers
Age 20 - 50 15 11 29
Age 50 - 70 35 13 9
Age + 70 50 16 2
Total 40 40

What is the average death rate for Pipe Smokers if they had same age
distribution as Non-Smokers?
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Subclassification: Example

Death Rates | # Pipe- | # Non-

Pipe Smokers | Smokers | Smokers
Age 20 - 50 15 11 29
Age 50 - 70 35 13 9
Age + 70 50 16 2
Total 40 40

What is the average death rate for Pipe Smokers if they had same age
distribution as Non-Smokers?

15 - (29/40) + 35 - (9/40) + 50 - (2/40) = 21.2
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Smoking and Mortality (Cochran (1968))

TABLE 3

ADJUSTED DEATH RATES USING 3 AGE GROUPS

Smoking group Canada U.K. u.s.
Non-smokers 20.2 11.3 135
Cigarettes 28.3 12.8 17.7
Cigars/pipes 21.2 12.0 14.2
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© !dentification Under Selection on Observables
@ Subclassification
@ Matching
@ Propensity Scores

@ Regression
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Identification Under Selection on Observables

Identification Assumption

@ (Y41, Yo)ILD|X (selection on observables)
@ 0 < Pr(D =1|X) < 1 with probability one (common support)

Identfication Result

| A\

Given selection on observables we have

E[Y: — YolX] = E[Yi-— Yo|X,D=1]
E[Y|X,D =1] - E[Y|X,D = 0]

Therefore, under the common support condition:

Tate = E[Y1- Y] = /E[YI = Yo|X] dP(X)

/ (E[Y|X,D = 1] — E[Y|X, D = 0]) dP(X)
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Identification Under Selection on Observables

Identification Assumption

@ (Y41, Yo)ILD|X (selection on observables)
@ 0 < Pr(D =1|X) < 1 with probability one (common support)

Identfication Result

| A\

Similarly,
TATT — E[Yl — Y0|D = 1]
= /(E[Y|X,D:1]—E[Y|X,D:O]) dP(X|D =1)

To identify TaoTT the selection on observables and common support conditions can
be relaxed to:

@ Yy lLD|X (SOO for Controls)
@ Pr(D =1|X) <1 (Weak Overlap)
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Identification Under Selection on Observables

Potential Outcome

Potential Outcome

unit under Treatment under Control
i Yii Yoi D; | X;
> | EMix=0D=1] |Elvx=0D=1 | | | ¢
3 0 0
E[Yi|X=0,D=0] | E[Yy|X =0,D = 0]
4 0 0
5 1 1
6 E[1|X =1,D =1] E[Yo|X =1,D =1] 1 1
7 0 1
8 EY1[X=1,D=0] | E[Ys|X =1,D=0] 0 1
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Identification Under Selection on Observables

Potential Outcome Potential Outcome

unit under Treatment under Control

i Y1 Yoi D; | X;
1 N E[YoX=0,D=1]=] 1 | 0
o [ EMIX=0D=1] | pry/x o p=q | 1|0
S | Evix=0D=0 | Elx=0D=0 | )|
5 PN EYoX=1D=1=] 1 | 1
6 | PMIX=1D=1] E[Yo|X =1,D = 0] 1|1
T Evix=10=0 | EMx=10=0 | o | |

(Y1, Yo)ILD|X implies that we conditioned on all confounders. The treat-

ment is randomly assigned within each stratum of X:
E[Yo|X=0,D=1] = E[Yy|X=0,D=0] and
E[Y0[X=1,D=1] = E[Y%|X=1,D=0]
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Identification Under Selection on Observables

Potential Outcome Potential Outcome

unit under Treatment under Control

i Y1 Yoi D, X
; ~ o |EX=0D=1=[1]0
, | EMIX=00D=1] E[Yo|X — 0.D — 0] e
3 | EY4X=0,D=0]= B - 1o
4 | EMW|X=0,0D=1] E[Yo[X=0,0=0] | o | g
6 | EAX=1D=1 | g/ S T p o | 1|
8 | E[ViX=1,D=1] E[YoX=1,0=0 | o | ]

(Y1, Yo)ILD|X also implies

E[Yi|X =0,D=1] =
E[ViX =1,D=1] =

E[Y1|X =0,D =0] and
E[Y4|X =1,D = 0]
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© !dentification Under Selection on Observables

@ Subclassification
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Subclassification Estimator

Identfication Result

TAaTE = / (E[Y|X,D = 1] — E[Y|X, D = 0]) dP(X)

TATT = / (E[Y|X,D =1] - E[Y|X,D =0]) dP(X|D = 1)

Assume X takes on K different cells {X1, ..., X* ..., XX}. Then the
analogy principle suggests estimators:
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Subclassification Estimator

Identfication Result

TAaTE = / (E[Y|X,D = 1] — E[Y|X, D = 0]) dP(X)

TATT = / (E[Y|X,D =1] - E[Y|X,D =0]) dP(X|D = 1)

Assume X takes on K different cells {X1, ..., X* ..., XX}. Then the
analogy principle suggests estimators:

K Nk K Nk
~_ vk vk N 1
-5 (). 55 (3)
k=1 k=1
o Nk is # of obs. and N{( is # of treated obs. in cell k

° \71" is mean outcome for the treated in cell k

o Y[ is mean outcome for the untreated in cell k 105



Subclassification by Age (K = 2)

Death Rate | Death Rate # 7#
Xk Smokers Non-Smokers | Diff. | Smokers | Obs.
Old 28 24 4 3 10
Young 22 16 6 7 10
Total 10 20
_ K

What is 7/:ATE = Zle (Vlk - YOk) ’ (
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Subclassification by Age (K = 2)

Death Rate | Death Rate # 7#

Xk Smokers Non-Smokers | Diff. | Smokers | Obs.
Old 28 24 4 3 10
Young 22 16 6 7 10
Total 10 20

What is Tate = Zle (Vlk - Y/Ok) ’ (NWk>?
TAaTE = 4 - (10/20) +6- (10/20) =5
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Subclassification by Age (K = 2)

Death Rate | Death Rate # #

X Smokers Non-Smokers | Diff. | Smokers | Obs.
old 28 24 4 3 10
Young 22 16 6 7 10
Total 10 20

.o~ \/ \/ Nk
What is Ta1T = Z/}le (Ylk - YOk) ) (Wi>?

41/103



Subclassification by Age (K = 2)

Death Rate | Death Rate # #

X Smokers Non-Smokers | Diff. | Smokers | Obs.
old 28 24 4 3 10
Young 22 16 6 7 10
Total 10 20

.o~ \/ \/ Nk
What is Ta1T = Z/}le (Ylk - YOk) ) (Wi>?

7arT =4 (3/10) +6 - (7/10) = 5.4
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Subclassification by Age and Gender (K = 4)

Death Rate | Death Rate +# +#
Xk Smokers Non-Smokers | Diff. | Smokers | Obs.
Old, Male 28 22 4 3 7
Old, Female 24 0 3
Young, Male 21 16 5 3 4
Young, Female 23 17 6 4 6
Total 10 20

What is Tate = Zle (\_/lk — \_/ok) . (NWk>?
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Subclassification by Age and Gender (K = 4)

Death Rate | Death Rate +# +#
Xk Smokers Non-Smokers | Diff. | Smokers | Obs.
Old, Male 28 22 4 3 7
Old, Female 24 0 3
Young, Male 21 16 5 3 4
Young, Female 23 17 6 4 6
Total 10 20

What is Tate = Zle (\_/lk — \_/ok) . (NWk>?

Not identified!
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Subclassification by Age and Gender (K = 4)

Death Rate | Death Rate +# +#
Xk Smokers Non-Smokers | Diff. | Smokers | Obs.
Old, Male 28 22 4 3 7
Old, Female 24 0 3
Young, Male 21 16 5 3 4
Young, Female 23 17 6 4 6
Total 10 20

k
Nl

What is TarT = Z/’le (Vlk - VOk) ) (m>?
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Subclassification by Age and Gender (K =

4)

Death Rate | Death Rate +# +#
Xk Smokers Non-Smokers | Diff. | Smokers | Obs.
Old, Male 28 22 4 3 7
Old, Female 24 0 3
Young, Male 21 16 5 3 4
Young, Female 23 17 6 4 6
Total 10 20

What ISTATT—Zk 1( YO) (N:>?

TarT =4-(3/10) +5-(3/10) + 6 - (4/10) = 5.1
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© !dentification Under Selection on Observables

@ Matching
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When X is continuous we can estimate 7477 by “imputing” the missing
potential outcome of each treated unit using the observed outcome from
the “closest” control unit:

1
marr = - > (Yi= Yi)
D=1

where Yj; is the outcome of an untreated observation such that Xj; is
the closest value to X; among the untreated observations.

48/103



When X is continuous we can estimate 7477 by “imputing” the missing
potential outcome of each treated unit using the observed outcome from
the “closest” control unit:

1
marr = - > (Yi= Yi)
D=1

where Yj; is the outcome of an untreated observation such that Xj; is
the closest value to X; among the untreated observations.

We can also use the average for M closest matches:

1 1M

D=1

Works well when we can find good matches for each treated unit
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Matching: Example with a Single X

Potential Outcome | Potential Outcome
unit | under Treatment under Control
i Y1i Yoi D; | X;
1 6 ? 1|3
2 1 ? 1|1
3 0 ? 1|10
4 0 0|2
5 9 0] 3
6 1 0 |-2
7 1 0| -4

What is ?ATT = Nl1 ZDI-:]_ (Yl - Yj("))?
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Matching: Example with a Single X

Potential Outcome | Potential Outcome
unit | under Treatment under Control
i Y1i Yoi D; | X;
1 6 ? 1|3
2 1 ? 1|1
3 0 ? 1|10
4 0 0|2
5 9 0] 3
6 1 0 |-2
7 1 0| -4

What is ?ATT = Nl1 ZDI-:]_ (Yl - Yj("))?
Match and plugin in
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Matching: Example with a Single X

Potential Outcome | Potential Outcome
unit | under Treatment under Control
i Y1i Yoi D; | X;
1 6 9 1|3
2 1 0 1] 1
3 0 9 1|10
4 0 0|2
5 9 0] 3
6 1 0 |-2
7 1 0| -4

What is ?ATT = Nl1 ZDI-:]_ (Yl - Yj("))?
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Matching: Example with a Single X

Potential Outcome | Potential Outcome
unit | under Treatment under Control
i Y1i Yoi D; | X;
1 6 9 1|3
2 1 0 1] 1
3 0 9 1|10
4 0 0|2
5 9 0] 3
6 1 0 |-2
7 1 0| -4

What i |s7'A-,--r—N1 > D= (Y- Y())
Parr =1/3-(6-9)+1/3-(1-0)+1/3-(0~9) = ~37

53/103



Matching Distance Metric

“Closeness” is often defined by a distance metric. Let
Xi = (Xg, Xg, ..., Xi)" and X; = (Xj1, Xj2, ..., Xjk)' be the covariate
vectors for i and j.

A commonly used distance is the Mahalanobis distance:

MD(Xi, X) = /(% — X)'T=1(X; — X;)

where X is the Variance-Covariance-Matrix so the distance metric is

scale-invariant and takes into account the correlations. For an exact match
MD(X;, X;) = 0.

Other distance metrics can be used, for example we might use the
normalized Euclidean distance, etc.
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R Code

X1 X2

[1,] 8.5 3.5

[2,] 8.1 4.4

[3,] 0.6 6.8

[4,] 1.3 3.9

[5,] 0.5 5.1

>

T,upper=T)

> Xdist <- dist(X,diag

> round(Xdist,1)

10.01.08.67.28.2
21.00.07.96.87.6
38.67.90.03.01.7
47.26.83.00.01.4
58.27.61.71.40.0
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Euclidean Distance Metric

X2

10

we

e

Ne
Ne
e

X1
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Useful Matching Functions

The workhorse model is the Match() function in the Matching package:

Match(Y = NULL, Tr, X, Z = X, V = rep(1, length(Y)),
estimand = "ATT", M = 1, BiasAdjust = FALSE, exact = NULL,
caliper = NULL, replace = TRUE, ties = TRUE,
CommonSupport = FALSE, Weight = 1, Weight.matrix = NULL,
weights = NULL, Var.calc = 0, sample = FALSE, restrict = NULL,
match.out = NULL, distance.tolerance = 1le-05,
tolerance = sqrt(.Machine$double.eps), version = "standard")

Default distance metric (Weight=1) is normalized Euclidean distance

@ MatchBalance(formu) for balance checking
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Local Methods and the Curse of Dimensionality

Big Problem:
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Local Methods and the Curse of Dimensionality

Big Problem: in a mathematical space, the volume increases exponentially when
adding extra dimensions.

Unit Cube -

\

\

Distance
0.6 0.8

0.4

0.2

0.0
|

\ 1 T —— T

Neighborhood 0.0 02 04 0.6

Fraction of Volume

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction v of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.
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Matching with Bias Correction

Matching estimators may behave badly if X contains multiple continuous
variables.

Need to adjust matching estimators in the following way:
TATT = m Z — (Fo(Xi) — Fo(Xj(iy)),

where pg(x) = E[Y|X = x, D = 0] is the population regression function
under the control condition and Jig is an estimate of L.

Xi — Xj(i) is often referred to as the matching discrepancy.

These “bias-corrected” matching estimators behave well even if pyg is
estimated using a simple linear regression (ie. po(x) = Bo + S1x) (Abadie
and Imbens, 2005)
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Matching with Bias Correction

Each treated observation contributes

po(Xi) — po(Xj(i))
to the bias.

Bias-corrected matching:

TATT = Z ( — (Ho(Xi) — O(Xj(i)))>

The large sample distribution of this estimator (for the case of matching
with replacement) is (basically) standard normal. pg is usually estimated
using a simple linear regression (ie. po(x) = Bo + S1x).

In R: Match(Y,Tr, X,BiasAdjust = TRUE)
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Bias Adjustment with Matched Data

Potential Outcome | Potential Outcome
unit | under Treatment under Control
i Y1i Yoi D; | X;
1 6 ? 1 3
2 1 ? 1 1
3 0 ? 1|10
4 0 0] 2
5 9 0|3
6 1 0| 8

What is FaTT = §- 3. p,—1 ((Y,- = Yjiy) — (o(X;) — ﬁo(Xj(i)))>?
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Bias Adjustment with Matched Data

Potential Outcome | Potential Outcome
unit under Treatment under Control
i Yii Yoi Di | X;
1 6 9 1 3
2 1 0 1 1
3 0 1 1 10
4 0 0 2
5 9 0 3
6 1 0 8

What is Farr = 7 3o (5 = Vi) = (70(X) — (X)) ) ?

Estimate fio(x) = Bo + Six =5 — .4x.
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Bias Adjustment with Matched Data

Potential Outcome | Potential Outcome
unit under Treatment under Control
i Yii Yoi Di | X;
1 6 9 1 3
2 1 0 1 1
3 0 1 1 10
4 0 0 2
5 9 0 3
6 1 0 8

What is Farr = 7 3o (5 = Vi) = (70(X) — (X)) ) ?

Estimate fio(x) = Bo + Bix =5 — .4x. Now plug in:

Tarr = 1/3{((6 = 9) — (10(3) — 10(3)))
(1 =0) = (10(1) — 0(2)))
((0—=1) = (10(10) — 10(8))) }
—0.86

+ +

Unadjusted: 1/3((6 —9)+ (1-0)+(0—-1)) = -1
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After Matching
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After Matching: Imputation Function
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After Matching: Imputation of missing Y
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After Matching: No Overlap in Yj
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After Matching: Imputation of missing Y

Y1 treated
e YO matched controls
mu_0(X)=beta0 + betal X
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After Matching: Imputation of missing Y
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Choices when Matching

@ With or Without Replacement?
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Choices when Matching

@ With or Without Replacement?
@ How many matches?
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Choices when Matching

@ With or Without Replacement?
@ How many matches?
@ Which Matching Algorithm?

Genetic Matching

Kernel Matching

Full Matching

Coarsened Exact Matching
Matching as Pre-processing

"]
]
]
]
"]
o Propensity Score Matching

74 /103



Choices when Matching

With or Without Replacement?
How many matches?
Which Matching Algorithm?

e Genetic Matching

o Kernel Matching

o Full Matching

o Coarsened Exact Matching

e Matching as Pre-processing

o Propensity Score Matching

@ Use whatever gives you the best balance! Checking balance is
important to get a sense for how much extrapolation is needed

e Should check balance on interactions and higher moments

@ With insufficient overlap, all adjustment methods are problematic
because we have to heavily rely on a model to impute missing
potential outcomes.

75/103



Balance Checks

PSAT verbal
PSAT math
Prior SAT verbal
Prior SAT math

Gender

First language

Ethnicity

Parent's income

Mother's education

Father's education

2 year vs. 4 year

Degree goal

Public vs. private

Avg. SAT at 1st choice college
Importance
Nervousness
Self-assessment

_________________ English
No. of courses in a‘;’ﬁ:g" Language
high school, by subject Natural Science
Social science

Natural Science
Social Science

T
-05 -03 -01 0.1 0.3 0.5 0.7 0.9 11
Standardized Biases

Figure 3. Standardized Biases Without Stratification or Matching,

Open Circles, and Under the Optimal [.5, 2] Full Match, Shaded Circles. 76 /103



Balance Checks - Lyall (2010)

TABLE 2. Balance Summary Statistics and Tests: Russian and Chechen Sweeps

Pretreatment Mean Mean Mean Std. Rank Sum K-S
Covariates Treated Control Difference Bias Test Test

Demographics

Population 8.657 8.606 0.049 0.033 0.708 0.454

Tariga 0.076 0.048 0.028 0.104 0.331 —

Poverty 1.917 1.931 —0.016 —0.024 0.792 1.000

Spatial

Elevation 5.078 5.233 —0.155 —0.135 0.140 0.228

Isolation 1.007 1.070 —0.063 —0.096 0.343 0.851

Groznyy 0.131 0.138 —0.007 —0.018 0.864 —_

War Dynamics

TAC 0.241 0.282 —0.041 —0.095 0.424 —

Garrison 0.379 0.414 —0.035 —0.072 0.549 —

Rebel 0.510 0.441 0.070 0.139 0.240 —

Selection

Presweep violence 3.083 3.117 —0.034 0.009 0.454 0.292

Large-scale theft 0.034 0.055 —0.021 —-0.115 0.395 —

Killing 0.117 0.090 0.027 0.084 0.443 —

Violence Inflicted

Total abuse 0.970 0.833 0.137 0.124 0.131 0.454

Prior sweeps 1.729 1.812 —0.090 —0.089 0.394 0.367

Other

Month 7.428 6.986 0.442 0.130 0.260 0.292

Year 2004.159 2004.110 0.049 0.043 0.889 1.000

Note: 145 matched pairs. Matching with replacement.
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© !dentification Under Selection on Observables

@ Propensity Scores
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|dentification with Propensity Scores

Definition

Propensity score is defined as the selection probability conditional on the
confounding variables: 7(X) = Pr(D = 1|X)

Identification Assumption
O (Y1, Yo)ILD|X (selection on observables)
@ 0 < Pr(D =1|X) < 1 with probability one (common support)

Identfication Result

Under selection on observables we have (Y1, Yp)ALD|m(X), ie.
conditioning on the propensity score is enough to have independence
between the treatment indicator and potential outcomes. Implies
substantial dimension reduction. )

| A\
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Matching on the Propensity Score

If (Y1, Yo)LLD|X, then

E[Y|D =1,7n(X) = m] — E[Y|D =0,n(X) =m] =
E[Y1 — Yo|n(X) = mo]

Suggests a two step procedure to estimate causal effects under selection
on observables:

@ Estimate the propensity score 7(X) = P(D = 1|X) (e.g. using
logit/probit regression, machine learning methods, etc)
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Matching on the Propensity Score

If (Y1, Yo)LLD|X, then

E[Y|D =1,7n(X) = m] — E[Y|D =0,n(X) =m] =
E[Y1 — Yo|n(X) = mo]

Suggests a two step procedure to estimate causal effects under selection
on observables:

@ Estimate the propensity score 7(X) = P(D = 1|X) (e.g. using

logit/probit regression, machine learning methods, etc)
@ Match or subclassify on propensity score.
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Estimating the Propensity Score

@ Given selection on observables we have (Y1, Yp)ALD|m(X) which
implies the balancing property of the propensity score:

Pr(X|D = 1,7(X)) = Pr(X|D = 0, (X))
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Estimating the Propensity Score

@ Given selection on observables we have (Y1, Yp)ALD|m(X) which
implies the balancing property of the propensity score:

Pr(X|D = 1,7(X)) = Pr(X|D = 0, (X))

@ We can use this to check if our estimated propensity score actually
produces balance: P(X|D =1,7(X)) = P(X|D = 0,7(X))
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Estimating the Propensity Score

Given selection on observables we have (Y1, Yp)ALD|m(X) which
implies the balancing property of the propensity score:

Pr(X|D = 1,7(X)) = Pr(X|D = 0, (X))

@ We can use this to check if our estimated propensity score actually
produces balance: P(X|D = 1,7(X)) = P(X|D = 0,7(X))

@ To properly model the assignment mechanism, we need to include
important confounders correlated with treatment and outcome

@ Need to find the correct functional form, miss-specified propensity
scores can lead to bias. Any methods can be used (probit, logit, etc.)

@ Estimate — Check Balance — Re-estimate — Check Balance
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Example: Blattman (20

pscore.fmla <- as.formula(paste("abd™",paste(names(covar),collapse="+")))
abd <- data$abd
pscore_model <- glm(pscore.fmla, data = data,
family = binomial(link = logit))
pscore <- predict(pscore_model, type = "response")

Treatment

Not Abucted

density

Abducted

08 85/103
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Blattman (2010): Match on the Propensity Score

match.pscore <- Match(Tr=abd, X=pscore, M=1, estimand="ATT")

Treatment

~
b

=== Not Abucted

density

= Abducted

0.2 0.4 0.6 08 86,103
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Blattman (2 Check Balance

match.pscore <-

+ MatchBalance(abd ~ age, data=data, match.out = match.pscore)

*xkkk (V1) age **kkxk
Before Matching

After Matching

mean treatment........ 21.366 21.366
mean control.......... 20.151 20.515
std mean diff......... 24.242 16.976
var ratio (Tr/Co)..... 1.0428 0.98412
T-test p-value........ 0.0012663 0.0034409
KS Bootstrap p-value.. 0.016 0.034
KS Naive p-value...... 0.024912 0.070191
KS Statistic.......... 0.11227 0.077899
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Blattman (2 : Mahalanobis Distance Matchng

match.mah <- Match(Tr=abd, X=covar, M=1, estimand="ATT", Weight = 3)
MatchBalance(abd ~ age, data=data, match.out = match.mah)

*xkkk (V1) age **kkxk

Before Matching After Matching
mean treatment........ 21.366 21.366
mean control.......... 20.151 21.154
std mean diff......... 24.242 4.2314
var ratio (Tr/Co)..... 1.0428 1.0336
T-test p-value........ 0.0012663 3.0386e-05
KS Bootstrap p-value.. 0.008 0.798
KS Naive p-value...... 0.024912 0.94687
KS Statistic.......... 0.11227 0.034261
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Blattman (2 Genetic Matching

genout <- GenMatch(Tr=abd,X=covar,BalanceMatrix=covar,estimand="ATT",
pop.size=1000)

match.gen <- Match(Tr=abd, X=covar,M=1,estimand="ATT",Weight.matrix=genout)

gen.bal <- MatchBalance(abd~age,match.out=match.gen,data=covar)

sxkkk (V1) age **kkxk

Before Matching After Matching
mean treatment........ 21.366 21.366
mean control.......... 20.151 21.225
std mean diff......... 24.242 2.8065
var ratio (Tr/Co)..... 1.0428 1.1337
T-test p-value........ 0.0012663 0.21628
KS Bootstrap p-value.. 0.008 0.454
KS Naive p-value...... 0.024912 0.68567
KS Statistic.......... 0.11227 0.046512
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© !dentification Under Selection on Observables

@ Regression
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|dentification under Selection on Observables: Regression

Consider the linear regression of Y; = 8o + 7D; + X! + €;.
Given selection on observables, there are mainly three identification
scenarios:
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|dentification under Selection on Observables: Regression

Consider the linear regression of Y; = g+ 7D; + X! + €.

Given selection on observables, there are mainly three identification
scenarios:

@ Constant treatment effects and outcomes are linear in X

e 7 will provide unbiased and consistent estimates of ATE.

@ Constant treatment effects and unknown functional form
o 7 will provide well-defined linear approximation to the average causal
response function E[Y|D = 1, X] — E[Y|D = 0, X]. Approximation

may be very poor if E[Y|D, X] is misspecified and then 7 may be
biased for the ATE.
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|dentification under Selection on Observables: Regression

Consider the linear regression of Y; = g+ 7D; + X! + €.

Given selection on observables, there are mainly three identification
scenarios:

@ Constant treatment effects and outcomes are linear in X

e 7 will provide unbiased and consistent estimates of ATE.

@ Constant treatment effects and unknown functional form
o 7 will provide well-defined linear approximation to the average causal
response function E[Y|D = 1, X] — E[Y|D = 0, X]. Approximation
may be very poor if E[Y|D, X] is misspecified and then 7 may be
biased for the ATE.

© Heterogeneous treatment effects (7 differs for different values of X)

o If outcomes are linear in X, 7 is unbiased and consistent estimator for
conditional-variance-weighted average of the underlying causal effects.
This average is often different from the ATE.
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|dentification under Selection on Observables: Regression

Identification Assumption
@ Constant treatment effect: T = Y1; — Yo; for all i

@ Control outcome is linear in X: Yoi = Bo + X! + €; with ¢; 1LX; (no
omitted variables and linearly separable confounding)

Identfication Result

Then Tate = E[Y1 — Yo] is identified by a regression of the observed
outcome on the covariates and the treatment indicator
Yi = Bo+7D;i + XiB + ¢
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Regression with Heterogeneous Effects

What is regression estimating when we allow for heterogeneity?
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Regression with Heterogeneous Effects

What is regression estimating when we allow for heterogeneity?

Suppose that we wanted to estimate 7o, s using a fully saturated
regression model:

Yi = BB+ ToLsDi + €;

where B,; is a dummy variable for unique combination of X;.

Because this regression is fully saturated, it is linear in the covariates
(i.e. linearity assumption holds by construction).
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Heterogenous Treatment Effects

With two X strata there are two stratum-specific average causal effects that are averaged to
obtain the ATE or ATT.

Subclassification weights the stratum-effects by the marginal distribution of X, i.e. weights are
proportional to the share of units in each stratum:

e = (E[Y|D=1,X=1]—-E[Y|D=0,X = 1])Pr(X = 1)
+ (E[Y|D=1,X=2]—E[Y|D=0,X = 2])Pr(X = 2)

Regression weights by the marginal distribution of X and the conditional variance of Var[D|X]
in each stratum:

- - o B B Var[D|X = 1]Pr(X = 1)
rors = (BIYID=1X=1]-EB[Y|D=0X =)o rr— o5y
B L _ _ Var[D|X = 2]Pr(X = 2)
o (EYID=1.X =2 = BIYID = 0,X = 2)) = 15X — I Pr(X = )

@ So strata with a higher Var[D|X] receive higher weight. These are the strata with
propensity scores close to .5

@ Strata with propensity score close to 0 or 1 receive lower weight

@ OLS is a minimum-variance estimator of 7o, s so it downweights strata where the average

causal effects are less precisely estimated. 97/103



Heterogenous Treatment Effects

With two X strata there are two stratum-specific average causal effects that are averaged to
obtain the ATE or ATT.

Subclassification weights the stratum-effects by the marginal distribution of X, i.e. weights are
proportional to the share of units in each stratum:

e = (E[Y|D=1,X=1]—-E[Y|D=0,X = 1])Pr(X = 1)
+ (E[Y|D=1,X=2]—E[Y|D=0,X = 2])Pr(X = 2)

Regression weights by the marginal distribution of X and the conditional variance of Var[D|X]
in each stratum:

- - o B B Var[D|X = 1]Pr(X = 1)
rors = (BIYID=1X=1]-EB[Y|D=0X =)o rr— o5y
B L _ _ Var[D|X = 2]Pr(X = 2)
o (EYID=1.X =2 = BIYID = 0,X = 2)) = 15X — I Pr(X = )

@ Whenever both weighting components are misaligned (e.g. the PS is close to 0 or 1 for
relatively large strata) then 7o, s diverges from Targ or Ta7T.

@ We still need overlap in the data (treated/untreated units in all strata of X)! Otherwise
OLS will interpolate/extrapolate — model-dependent results
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Conclusion: Regression

| Is regression evil? ® |
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Conclusion: Regression

‘ Is regression evil? ® ‘

@ Its ease sometimes results in lack of thinking. So only a little. ®
@ For descriptive inference, very useful!
o Good tool for characterizing the conditional expectation function (CEF)
o But other less restrictive tools are also available for that task (machine
learning)
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Conclusion: Regression

‘ Is regression evil? ® ‘

@ Its ease sometimes results in lack of thinking. So only a little. ®
@ For descriptive inference, very useful!
o Good tool for characterizing the conditional expectation function (CEF)
o But other less restrictive tools are also available for that task (machine
learning)
@ For causal analysis, always need to ask yourself if linearly separable
confounding is plausible.
o A regression is causal when the CEF it approximates is causal.
o Still need to check common support!
o Results will be highly sensitive if the treated and controls are far apart
(e.g. standardized difference above .2)
@ Think about what your estimand is: because of variance weighting,
coefficient from your regression may not capture ATE if effects are
heterogeneous
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@ When Do Observational Studies Recover Experimental Benchmarks?
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Dehejia and Wabha (1999) Results

Table 3. Estimated Training Effects for the NSW Male Participants Using Comparison Groups From PSID and CPS

NSW ings less ison group ings,
NSW earnings less itic on the estir propensity score
comparison group
_ eamings Quadratic Stratifying on the score Matching on the score
(1) 2 in score” 4) 5) (6) (7) (8)
Unadjusted Adjusted?® 3) Unadjusted Adjusted Observations® Unadjusted Adjusted®
NSwW 1,794 1,672
(633) (638)
PSID-1¢ —15,205 731 294 1,608 1,494 1,255 1,691 1,473
(1,154) (886) (1,389) (1,571) (1,581) (2,209) (809)
PSID-2 —3,647 683 496 2,220 2,235 389 1,455 1,480
(959) (1,028) (1,193) (1,768) (1,793) (2,303) (808)
PSID-3 1,069 825 647 2,321 1,870 247 2,120 1,549
(899) (1,104) (1,383) (1,994) (2,002) (2,335) (826)
CPS-19 —8,498 972 1,117 1,713 1,774 4,117 1,582 1,616
(712) (550) (747) (1,115) (1,152) (1,089) (751)
CPs-29 —3,822 790 505 1,543 1,622 1,493 1,788 1,563
(670) (658) (847) (1,461) (1,346) (1,205) (7583)
CPS-39 —635 1,326 556 1,252 2,219 514 587 662
(657) (798) (951) (1,617) (2,082) (1,496) (776)

2 Least squares regression: RE78 on a constant, a treatment indicator, age, age?, education, no degree, black, Hispanic, RE74, RE75.

© Least squares regression of RE78 on a quadratic on the estimated propensity score and a treatment indicator, for observations used under stratification; see note (g).

© Number of observations refers to the actual number of comparison and treatment units used for (3)-(5); namely, all treatment units and those comparison units whose estimated propensity
score i greater than the minimum, and less than the maximum, estimated propensity score for the treatment group.

 Weighted least squares: treatment observations weighted as 1, and control observations weighted by the number of times they are matched to a treatment observation [same covariates as (a)].

Propensity scores are estimated using the logistic model, with specifications as follows:

©PSID-1: Prob () = 1) = F(age, age?, education, education?, married, no degree, black, Hispanic, RE74, RE75, RE742, RE75%, u74™ black).

! PSID-2 and PSID-3: Prob (T; = 1) = F(age, age?, education, education?, no degree, married, black, Hispanic, RE74, RE742, RE75, RE75%, u74, u75).

9GPS-1, CPS-2, and GPS-3: Prob (T; = 1) = F(age, age?, education, education?, no degree, married, biack, Hispanic, RE74, RE75, u74, u75, education* RE74, age®).
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