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Lancet 2001: negative correlation between coronary heart disease mortality
and level of vitamin C in bloodstream (controlling for age, gender, blood
pressure, diabetes, and smoking)
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Lancet 2002: no effect of vitamin C on mortality in controlled placebo trial
(controlling for nothing)
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Lancet 2003: comparing among individuals with the same age, gender,
blood pressure, diabetes, and smoking, those with higher vitamin C levels
have lower levels of obesity, lower levels of alcohol consumption, are less
likely to grow up in working class, etc.
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Observational Medical Trials
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Observational Studies

Randomization forms gold standard for causal inference, because it
balances observed and unobserved confounders

Cannot always randomize so we do observational studies, where we
adjust for the observed covariates and hope that unobservables are
balanced

Better than hoping: design observational study to approximate an
experiment

“The planner of an observational study should always ask himself: How
would the study be conducted if it were possible to do it by controlled
experimentation” (Cochran 1965)
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Outline

1 What Makes a Good Observational Study?

2 Removing Bias by Conditioning

3 Identification Under Selection on Observables

Subclassification
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4 When Do Observational Studies Recover Experimental Benchmarks?
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The Good, the Bad, and the Ugly

Treatments, Covariates, Outcomes

Randomized Experiment: Well-defined treatment, clear distinction
between covariates and outcomes, control of assignment mechanism

Better Observational Study: Well-defined treatment, clear distinction
between covariates and outcomes, precise knowledge of assignment
mechanism

Can convincingly answer the following question: Why do two units who
are identical on measured covariates receive different treatments?

Poorer Observational Study: Hard to say when treatment began or
what the treatment really is. Distinction between covariates and
outcomes is blurred, so problems that arise in experiments seem to be
avoided but are in fact just ignored. No precise knowledge of
assignment mechanism.
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The Good, the Bad, and the Ugly

How were treatments assigned?

Randomized Experiment: Random assignment

Better Observational Study: Assignment is not random, but
circumstances for the study were chosen so that treatment seems
haphazard, or at least not obviously related to potential outcomes
(sometimes we refer to these as natural or quasi-experiments)

Poorer Observational Study: No attention given to assignment
process, units self-select into treatment based on potential outcomes
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The Good, the Bad, and the Ugly

What is the problem with purely cross-sectional data?

Difficult to know what is pre or post treatment.

Many important confounders will be affected by the treatment and
including these “bad controls” induces post-treatment bias.

But if you do not condition on the confounders that are
post-treatment, then often only left with a limited set of covariates
such as socio-demographics.
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The Good, the Bad, and the Ugly

Were treated and controls comparable?

Randomized Experiment: Balance table for observables.

Better Observational Study: Balance table for observables. Ideally
sensitivity analysis for unobservables.

Poorer Observational Study: No direct assessment of comparability is
presented.
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The Good, the Bad, and the Ugly

Eliminating plausible alternatives to treatment effects?

Randomized Experiment: List plausible alternatives and experimental
design includes features that shed light on these alternatives
(e.g. placebos). Report on potential attrition and non-compliance.

Better Observational Study: List plausible alternatives and study
design includes features that shed light on these alternatives
(e.g. multiple control groups, longitudinal covariate data, etc.).
Requires more work than in experiment since there are usually many
more alternatives.

Poorer Observational Study: Alternatives are mentioned in discussion
section of the paper.
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Good Observational Studies

Design features we can use to handle unobservables:

Design comparisons so that unobservables are likely to be balanced
(e.g. sub-samples, groups where treatment assignment was accidental,
etc.)

Unobservables may differ, but comparisons that are unaffected by
differences in time-invariant unobservables

Instrumental variables, if applied correctly

Multiple control groups that are known to differ on unobservables

Sensitivity analysis and bounds
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Seat Belts on Fatality Rates

I I>ill'mmas and Craftsmanship 

Table 1.1 Crashes in FARS 1975-1983 in which the front sCIiI hud tW() on:upants, a driver and a 
passenger, with one belted, the other unbelted, and one died and one survived, 

Driver Not Iklted Belted 

10 

Passenger Belted Not Belted 
Driver Died Passenger Survived 189 153 

Driver Survived Passenger Dicd I I I 363 

risk-tolerant drivers do not wear seat belts, drive faster and closer, ignore road con­
ditions - then a simple comparison of belted and unbelted drivers may credit seat 
belts with effects that reflect, in part, the severity of the crash. 

Using data from the U.S. Fatal Accident Reporting System (FARS), Leonard 
Evans [14] looked at crashes in which there were two individuals in the front seat, 
one belted, the other unbelted, with at least one fatality. In these crashes, several 
otherwise uncontrolled features are the same for driver and passenger: speed, road 
traction, distance from the car ahead, reaction time. Admittedly, risk in the pas­
senger seat may differ from risk in the driver seat, but in this comparison there are 
belted drivers with unbelted passengers and un belted drivers with belted passengers, 
so this issue may be examined. Table 1.1 is derived from Evans' [14] more detailed 
tables. In this table, when the passenger is belted and the driver is not, more often 
than not, the driver dies; conversely, when the driver is belted and the passenger is 
not, more often than not, the passenger dies. 

Everyone in Table 1.1 is at least sixteen years of age. Nonetheless, the roles 
of driver and passenger are connected to law and custom, for parents and children, 
husbands and wives, and others. For this reason, Evans did further analyses, for 
instance taking account of the ages of driver and passenger, with similar results. 

Evans [14, page 239]wrote: 

The crucial information for this study is provided by cars in which the safety belt use of 
the subject and other occupant differ ... There is a strong tendency for safety belt use or 
non-use to be the same for different occupants of the same vehicle ... Hence, sample sizes 
in the really important cells are ... small ... 

This study is discussed further in §5.2.6. 

1.5 Money for College 

To what extent, if any, does financial aid increase college attendance? It would not 
do to simply compare those who received aid with those who did not. Decisions 
about the allocation of financial aid are often made person by person, wilh consider­
ation of financial need and academic promise, together with many olher faclors. A 
grant of financiul aid is often a response to an application for ald. lind the decision 
to apply or not is likely to retlecl an individual's motivation t'or "o"llnued education 
und compeling immediute career prospects. 

Nlltllll''s 'Natural Experiment' 

Tlll'SI illlate the effect of financial aid on college attendance, Susan Dyn 
"II shift in aid policy that affect[ed] some students but not othert," 
tllIll 1982, a program of the U.S. Social Security Administration prm 
III lillancial aid to attend college for the children of deceased Soolll 
Idllries, but the U.S. Congress voted in 1981 to end the program, l 
IlIl' National Longitudinal Survey of Youth, Dynarski [13] compl" 
IIl1l'e of high school seniors with deceased fathers and high ac:ho 

Ittlhcrs were not deceased, in 1979-1981 when aid was avulluhl 
1')X3 after the elimination of the program. Figure 1.2 depicts Ihe cn 

IU7') 19X I, while the Social Security Student Benefit Program pr(lvle 
s with deceased fathers, these students were more likely than nih." 
, hut in 1982-1983, after the program was eliminated, these IIUd 

IIkl'ly thun others to attend college. 

re 1.2, the grouo that faced a 


Itt\'d 10 the child's age aM gelIdcl. bot me chIldren 01 decea.ad ,. 
(llid fathers with less education and were more likely 10 he bit 

Ihl'Sl' di fferences were about the same in 1979-1981 and 19M2-19M' 
nn's ulone are not good explanations of the shift in college ullen~ 
II. This study is discussed further in Chapter 13. 

Nature's 'Natural Experiment' 

In)l whether a particular gene plays a role in causing a particular dl.. 
111 is that the frequencies of various forms of a gene (its allel,.) YI 

1'1'11111 one human community to the next. At the same time. habltl, 
lind environments also vary somewhat from one community 10 ahl 

nee, un ussociation between a particular allele and u purtlcular db 
CULlslIl: gene and disease may both be associated with some caul 

is not genetic. Conveniently, nature has cre9'ted a natural '''peril 
the exception of sex-linked genes, a person receives two valor 

ups identical, one from each parent, and transmits one copy tot 
.•Imu,) upproximation, in the formation of a fertilized eaa. elCh " 

nne of two possible alleles, each with probability!, the contl'lbulll 
tN being independent of euch other, and independent for dlfl'lNi 

••me purents. (The transmissions of differenl genes that are nil..... 
ohrnm(ls(lme urc notgenerully independent: see [~I, §I~,4), In GOIII 

lene muy be ussucluted with a disealle nol because It II • Olt 
hut ruther hecuulle It I" u murker for u nelahhorlnllenetha, II • II 

Evans (1986)
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Immigrant Attributes on Naturalization
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A known treatment assignment process
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Immigrant Attributes on Naturalization

“Official voting leaflets summarizing the applicant
characteristics were sent to all citizens usually about two to
six weeks before each naturalization referendum. Since we
retrieved the voting leaflets from the municipal archives, we
measure the same applicant information from the
leaflets that the citizens observed when they voted on
the citizenship applications. Since most voters simply
draw on the leaflets to decide on the applicants, this design
enables us to greatly minimize potential omitted variable bias
and attribute differences in naturalization outcomes to the
effects of differences in measured applicant characteristics.”
-Hainmueller and Hangartner (2013)
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Persuasive Effect of Endorsement Changes on Labour Vote

EXPLOITING A RARE COMMUNICATION SHIFT 399

FIGURE 1 Persuasive Effect of Endorsement
Changes on Labour Vote Choice
between 1992 and 1997

This figure shows that reading a paper that switched to Labour
is associated with an (15.2 − 6.6 =) 8.6 percentage point shift to
Labour between the 1992 and 1997 UK elections. Paper readership
is measured in the 1996 wave, before the papers switched, or, if
no 1996 interview was conducted, in an earlier wave. Confidence
intervals show one standard error.

Among those who did, it rises considerably more: 19.4
points, from 38.9 to 58.3%. Consequently, switching pa-
per readers were 6.6% more likely to vote for Labour in
1992 and 15.2% more likely to do so in 1997. Thus, read-
ing a switching paper corresponds with an (15.2 − 6.6 =)
8.6 point greater increase in the likelihood of voting for
Labour. This statistically significant estimate of the bi-
variate treatment effect, presented in Column 1 of the top
section of Table 2, suggests that the shifts in newspaper
slant were indeed persuasive.

Of course, readers of the switching papers potentially
differ from control individuals on a myriad of attributes,
and these differences, rather than reading a paper that
switched, could be inflating this bivariate relationship. By
design, we reduce the possibility that such differences re-
sult from self-selection by measuring readership before
these papers unexpectedly switched to Labour. Neverthe-
less, differences could still exist. As is evident in Figure 1,
for instance, switching paper readers were more likely to
vote for Labour in 1992, which may also be indicative
of a greater predisposition among these readers toward
switching to Labour in the future.

To address the possibility that differences on other
attributes, not the slant changes, caused switching pa-

per readers’ greater shift to Labour, we condition on a
large number of potentially confounding variables. We
searched the literature and conducted our own analy-
sis to determine what other variables are associated with
shifting to a Labour vote. In all cases, we measure these
control (or conditioning) variables before the endorse-
ment shifts to avoid bias that can result from measuring
control variables after the treatment (posttreatment bias).
Unless otherwise specified, these are measured in the 1992
panel wave.10 Based on our analysis, the best predictor of
shifting to Labour is, not surprisingly, respondents’ prior
evaluations of the Labour Party (see Appendix Table 1).
Respondents who did not vote for Labour in 1992, but
who rated Labour favorably, are much more likely than
are others to shift their votes to Labour in 1997. To ac-
count for any differences in evaluations of Labour, we
include Prior Labour Party Support as well as Prior Con-
servative Party Support as controls. We also include indi-
cator variables for Prior Labour Vote, Prior Conservative
Vote, Prior Liberal Vote, Prior Labour Party Identification,
Prior Conservative Party Identification, Prior Liberal Party
Identification, and whether their Parents Voted Labour.

In addition to support for the parties, we find that a
six-item scale of Prior Ideology (Heath, Evans, and Mar-
tin 1994; Heath et al. 1999) proves a good predictor of
switching to a Labour vote. Given the housing market
crash earlier in John Major’s term (Butler and Kavanagh
1997, 247), we expect that a self-reported measure of
respondents’ Prior Coping with Mortgage might explain
vote shifts.11 We are also concerned that the tabloid for-
mat of the Sun and Daily Star might attract readers of a
lower socioeconomic status—Labour’s traditional base.
One might expect these readers to return to the rein-
vigorated Labour Party, which had been out of favor for
two decades. To account for such differences, we include
Prior Education, Prior Income, Prior Working Class Iden-
tification, whether a respondent is a Prior Trade Union
Member, whether he or she identifies as White, a six-item
scale of Prior Authoritarianism (Heath, Evans, and Mar-
tin 1994; Heath et al. 1999), as well as Prior Profession
and Prior Region. We also account for differences in Age
and Gender, both of which Butler and Kavanagh (1997,
247) find to be associated with switching one’s vote to
Labour in 1997. Finally, to account for further differences
between the treated and untreated groups on variables
that might moderate persuasion, we also include Prior

10For detailed descriptions and coding of these variables, see foot-
note 2.

11Since the housing market crash occurred after the 1992 interviews,
we also tried controlling for 1995 responses to this question, and
the results remained unchanged. This question was asked only in
1992, 1995, and 1997.

Ladd and Lenz (1999)
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Persuasive Effect of Endorsement Changes on Labour Vote

404 JONATHAN McDONALD LADD AND GABRIEL S. LENZ

FIGURE 2 The Treatment Effect Only Emerges
in 1997

Using the hypothetical vote choice question asked in the 1996
wave, this figure shows that the treatment effect only emerges after
1996. Habitual readers are those who read a paper that switched in
every wave in which they were interviewed before the 1997 wave.
Respondents who failed to report a vote choice or vote intent in any
of the three waves are excluded from the analysis, which results in a
smaller n than in Figure 1. Confidence intervals show one standard
error.

Did Newspapers Follow Their Readers?

Another alternative explanation for our finding is that
switching papers may have shifted to Labour between
1992 and 1997 because they observed their readers shift-
ing to Labour and then followed them (McNair 2003).
To address this concern, we conduct a third placebo test
by checking that readers of these papers do not begin
shifting to Labour before the 1997 campaign. We do so
by verifying that the persuasion effect only emerges be-
tween the 1996 and 1997 waves of the panel. Finding
that it emerges before 1996, that is, before the endorse-
ment switches, would raise concerns about reverse cau-

sation. Our dependent variable for this third placebo test
is the vote intention question in the 1996 wave (used
in the first placebo test). Figure 2 presents the persua-
sive effect, as in Figure 1, while also showing vote in-
tention for the treated and untreated in 1996, just be-
fore the treatment. It further differentiates between two
types of treatment groups: all readers (top panel) and
habitual readers (bottom panel).20 As expected, the treat-
ment effect is absent before the 1997 wave, reducing con-
cerns that the endorsement shifts were responses to al-
ready changing voting preferences among readers of these
papers.21

In summary, the treated group’s shift to Labour did
not occur before the endorsement shifts, but afterwards.
Of course, treated readers could have shifted after the
1996 interviews but before the 1997 endorsement an-
nouncements. Although we cannot rule this out, treated
and untreated groups are so similar on covariates that it
seems unlikely the treated shifted suddenly to Labour in
this short interval, long after the Conservative govern-
ment had become deeply unpopular.

Treatment Group and Panel Attrition

Another remaining concern is that Conservative read-
ers may have self-selected away from reading switching
papers before the 1996 panel wave. Many previously pro-
Conservative papers, including switching papers like the
Sun, Daily Star, and Financial Times, became critical of
Major’s government after the 1992 election. This cover-
age could have provoked Conservative supporters to drop
these papers and Labour supporters to read them, leaving
switching paper readers potentially more vulnerable to
persuasion.

Although plausible, we find little evidence consistent
with this account. In the previous section, we showed that
readers of switching papers did not become more pre-
disposed to Labour between 1992 and 1996 (compared
to others), indicating no net tendency by Conservative

20Figure 2 uses unmatched data as in Figure 1. The treatment effect
still emerges only between 1996 and 1997 if one uses the matched
data. The number of respondents in the treated and untreated
groups in Figure 2 falls somewhat due to panel attrition in 1996.
Also, an anomaly occurs between 1992 and 1994, in which Sun
readers switch to (hypothetical) Labour vote choices at lower rates
than other respondents do. By 1995, however, Sun readers join the
general shift to Labour.

21The same pattern holds when we disaggregate the control group
into Conservative paper readers, Labour paper readers, other or no
affiliation paper readers, and those who did not read newspapers.
In each case, the treatment effect emerges between the 1996 and
1997 panel waves. For these results, see footnote 2.

Ladd and Lenz (1999)
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Adjustment for Observables in Observational Studies

Subclassification
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Regression

21 / 103



Smoking and Mortality (Cochran (1968))

Table 1

Death Rates per 1,000 Person-Years

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5
Cigars/pipes 35.5 20.7 17.4
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Smoking and Mortality (Cochran (1968))

Table 2

Mean Ages, Years

Smoking group Canada U.K. U.S.

Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7
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Subclassification

To control for differences in age, we would like to compare different
smoking-habit groups with the same age distribution

One possibility is to use subclassification:

for each country, divide each group into different age subgroups

calculate death rates within age subgroups

average within age subgroup death rates using fixed weights (e.g.
number of cigarette smokers)
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Subclassification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers?

15 · (11/40) + 35 · (13/40) + 50 · (16/40) = 35.5
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Subclassification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers?

15 · (11/40) + 35 · (13/40) + 50 · (16/40) = 35.5
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Subclassification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers if they had same age
distribution as Non-Smokers?

15 · (29/40) + 35 · (9/40) + 50 · (2/40) = 21.2
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Subclassification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers if they had same age
distribution as Non-Smokers?

15 · (29/40) + 35 · (9/40) + 50 · (2/40) = 21.2
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Smoking and Mortality (Cochran (1968))

Table 3

Adjusted Death Rates using 3 Age groups

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 28.3 12.8 17.7
Cigars/pipes 21.2 12.0 14.2
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Identification Under Selection on Observables

Identification Assumption
1 (Y1,Y0)⊥⊥D|X (selection on observables)

2 0 < Pr(D = 1|X ) < 1 with probability one (common support)

Identfication Result
Given selection on observables we have

IE[Y1 − Y0|X ] = IE[Y1 − Y0|X ,D = 1]

= IE[Y |X ,D = 1]− IE[Y |X ,D = 0]

Therefore, under the common support condition:

τATE = IE[Y1 − Y0] =

∫
IE[Y1 − Y0|X ] dP(X )

=

∫ (
IE[Y |X ,D = 1]− IE[Y |X ,D = 0]

)
dP(X )
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Identification Under Selection on Observables

Identification Assumption
1 (Y1,Y0)⊥⊥D|X (selection on observables)

2 0 < Pr(D = 1|X ) < 1 with probability one (common support)

Identfication Result
Similarly,

τATT = IE[Y1 − Y0|D = 1]

=

∫ (
IE[Y |X ,D = 1]− IE[Y |X ,D = 0]

)
dP(X |D = 1)

To identify τATT the selection on observables and common support conditions can
be relaxed to:

Y0⊥⊥D|X (SOO for Controls)

Pr(D = 1|X ) < 1 (Weak Overlap)
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1
IE[Y1|X = 0,D = 1] IE[Y0|X = 0,D = 1]

1 0
2 1 0
3

IE[Y1|X = 0,D = 0] IE[Y0|X = 0,D = 0]
0 0

4 0 0
5

IE[Y1|X = 1,D = 1] IE[Y0|X = 1,D = 1]
1 1

6 1 1
7

IE[Y1|X = 1,D = 0] IE[Y0|X = 1,D = 0]
0 1

8 0 1
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1
IE[Y1|X = 0,D = 1]

IE[Y0|X = 0,D = 1]= 1 0
2 IE[Y0|X = 0,D = 0] 1 0
3

IE[Y1|X = 0,D = 0] IE[Y0|X = 0,D = 0]
0 0

4 0 0
5

IE[Y1|X = 1,D = 1]
IE[Y0|X = 1,D = 1]= 1 1

6 IE[Y0|X = 1,D = 0] 1 1
7

IE[Y1|X = 1,D = 0] IE[Y0|X = 1,D = 0]
0 1

8 0 1

(Y1,Y0)⊥⊥D|X implies that we conditioned on all confounders. The treat-
ment is randomly assigned within each stratum of X :

IE[Y0|X = 0,D = 1] = IE[Y0|X = 0,D = 0] and

IE[Y0|X = 1,D = 1] = IE[Y0|X = 1,D = 0]
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1
IE[Y1|X = 0,D = 1]

IE[Y0|X = 0,D = 1]= 1 0
2 IE[Y0|X = 0,D = 0] 1 0
3 IE[Y1|X = 0,D = 0] =

IE[Y0|X = 0,D = 0]
0 0

4 IE[Y1|X = 0,D = 1] 0 0
5

IE[Y1|X = 1,D = 1]
IE[Y0|X = 1,D = 1]= 1 1

6 IE[Y0|X = 1,D = 0] 1 1
7 IE[Y1|X = 1,D = 0] =

IE[Y0|X = 1,D = 0]
0 1

8 IE[Y1|X = 1,D = 1] 0 1

(Y1,Y0)⊥⊥D|X also implies

IE[Y1|X = 0,D = 1] = IE[Y1|X = 0,D = 0] and

IE[Y1|X = 1,D = 1] = IE[Y1|X = 1,D = 0]
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Subclassification Estimator

Identfication Result

τATE =

∫ (
IE[Y |X ,D = 1]− IE[Y |X ,D = 0]

)
dP(X )

τATT =

∫ (
IE[Y |X ,D = 1]− IE[Y |X ,D = 0]

)
dP(X |D = 1)

Assume X takes on K different cells {X 1, ...,X k , ...,XK}. Then the
analogy principle suggests estimators:

τ̂ATE =
K∑

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
; τ̂ATT =

K∑
k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1

N1

)

Nk is # of obs. and Nk
1 is # of treated obs. in cell k

Ȳ k
1 is mean outcome for the treated in cell k

Ȳ k
0 is mean outcome for the untreated in cell k
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Subclassification Estimator

Identfication Result

τATE =

∫ (
IE[Y |X ,D = 1]− IE[Y |X ,D = 0]

)
dP(X )

τATT =

∫ (
IE[Y |X ,D = 1]− IE[Y |X ,D = 0]

)
dP(X |D = 1)

Assume X takes on K different cells {X 1, ...,X k , ...,XK}. Then the
analogy principle suggests estimators:

τ̂ATE =
K∑

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
; τ̂ATT =

K∑
k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1

N1

)

Nk is # of obs. and Nk
1 is # of treated obs. in cell k

Ȳ k
1 is mean outcome for the treated in cell k

Ȳ k
0 is mean outcome for the untreated in cell k
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Subclassification by Age (K = 2)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old 28 24 4 3 10

Young 22 16 6 7 10

Total 10 20

What is τ̂ATE =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
?

τ̂ATE = 4 · (10/20) + 6 · (10/20) = 5
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Subclassification by Age (K = 2)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old 28 24 4 3 10

Young 22 16 6 7 10

Total 10 20

What is τ̂ATE =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
?

τ̂ATE = 4 · (10/20) + 6 · (10/20) = 5
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Subclassification by Age (K = 2)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old 28 24 4 3 10

Young 22 16 6 7 10

Total 10 20

What is τ̂ATT =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1
N1

)
?

τ̂ATT = 4 · (3/10) + 6 · (7/10) = 5.4
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Subclassification by Age (K = 2)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old 28 24 4 3 10

Young 22 16 6 7 10

Total 10 20

What is τ̂ATT =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1
N1

)
?

τ̂ATT = 4 · (3/10) + 6 · (7/10) = 5.4

42 / 103



Subclassification by Age and Gender (K = 4)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old, Male 28 22 4 3 7

Old, Female 24 0 3

Young, Male 21 16 5 3 4

Young, Female 23 17 6 4 6

Total 10 20

What is τ̂ATE =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
?

Not identified!
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Subclassification by Age and Gender (K = 4)

Death Rate Death Rate # #
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(
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)
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τ̂ATT = 4 · (3/10) + 5 · (3/10) + 6 · (4/10) = 5.1
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Subclassification by Age and Gender (K = 4)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old, Male 28 22 4 3 7

Old, Female 24 0 3
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Young, Female 23 17 6 4 6

Total 10 20

What is τ̂ATT =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1
N1

)
?

τ̂ATT = 4 · (3/10) + 5 · (3/10) + 6 · (4/10) = 5.1
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Outline

1 What Makes a Good Observational Study?

2 Removing Bias by Conditioning

3 Identification Under Selection on Observables

Subclassification

Matching

Propensity Scores

Regression

4 When Do Observational Studies Recover Experimental Benchmarks?
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Matching

When X is continuous we can estimate τATT by “imputing” the missing
potential outcome of each treated unit using the observed outcome from
the “closest” control unit:

τ̂ATT =
1

N1

∑
Di=1

(
Yi − Yj(i)

)
where Yj(i) is the outcome of an untreated observation such that Xj(i) is
the closest value to Xi among the untreated observations.

We can also use the average for M closest matches:

τ̂ATT =
1

N1

∑
Di=1

{
Yi −

(
1

M

M∑
m=1

Yjm(i),

)}

Works well when we can find good matches for each treated unit

48 / 103



Matching

When X is continuous we can estimate τATT by “imputing” the missing
potential outcome of each treated unit using the observed outcome from
the “closest” control unit:

τ̂ATT =
1

N1

∑
Di=1

(
Yi − Yj(i)

)
where Yj(i) is the outcome of an untreated observation such that Xj(i) is
the closest value to Xi among the untreated observations.

We can also use the average for M closest matches:

τ̂ATT =
1

N1

∑
Di=1

{
Yi −

(
1

M

M∑
m=1

Yjm(i),

)}

Works well when we can find good matches for each treated unit

49 / 103



Matching: Example with a Single X

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 6 ? 1 3
2 1 ? 1 1
3 0 ? 1 10

4 0 0 2
5 9 0 3
6 1 0 -2
7 1 0 -4

What is τ̂ATT = 1
N1

∑
Di=1

(
Yi − Yj(i)

)
?

Match and plugin in
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Matching: Example with a Single X

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 6 9 1 3
2 1 0 1 1
3 0 9 1 10

4 0 0 2
5 9 0 3
6 1 0 -2
7 1 0 -4

What is τ̂ATT = 1
N1

∑
Di=1

(
Yi − Yj(i)

)
?

τ̂ATT = 1/3 · (6− 9) + 1/3 · (1− 0) + 1/3 · (0− 9) = −3.7
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Matching: Example with a Single X
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Matching Distance Metric

“Closeness” is often defined by a distance metric. Let
Xi = (XB ,XB , ...,Xik)′ and Xj = (Xj1,Xj2, ...,Xjk)′ be the covariate
vectors for i and j .

A commonly used distance is the Mahalanobis distance:

MD(Xi ,Xj) =
√

(Xi − Xj)′Σ−1(Xi − Xj)

where Σ is the Variance-Covariance-Matrix so the distance metric is
scale-invariant and takes into account the correlations. For an exact match
MD(Xi ,Xj) = 0.

Other distance metrics can be used, for example we might use the
normalized Euclidean distance, etc.

54 / 103



Euclidean Distance Metric

R Code
> X

X1 X2

[1,] 8.5 3.5

[2,] 8.1 4.4

[3,] 0.6 6.8

[4,] 1.3 3.9

[5,] 0.5 5.1

>

> Xdist <- dist(X,diag = T,upper=T)

> round(Xdist,1)

1 2 3 4 5

1 0.0 1.0 8.6 7.2 8.2

2 1.0 0.0 7.9 6.8 7.6

3 8.6 7.9 0.0 3.0 1.7

4 7.2 6.8 3.0 0.0 1.4

5 8.2 7.6 1.7 1.4 0.0
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Euclidean Distance Metric
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Useful Matching Functions

The workhorse model is the Match() function in the Matching package:

Match(Y = NULL, Tr, X, Z = X, V = rep(1, length(Y)),

estimand = "ATT", M = 1, BiasAdjust = FALSE, exact = NULL,

caliper = NULL, replace = TRUE, ties = TRUE,

CommonSupport = FALSE, Weight = 1, Weight.matrix = NULL,

weights = NULL, Var.calc = 0, sample = FALSE, restrict = NULL,

match.out = NULL, distance.tolerance = 1e-05,

tolerance = sqrt(.Machine$double.eps), version = "standard")

Default distance metric (Weight=1) is normalized Euclidean distance

MatchBalance(formu) for balance checking
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Local Methods and the Curse of Dimensionality

Big Problem:

in a mathematical space, the volume increases exponentially when
adding extra dimensions.
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Matching with Bias Correction

Matching estimators may behave badly if X contains multiple continuous
variables.

Need to adjust matching estimators in the following way:

τ̃ATT =
1

N1

∑
Di=1

(Yi − Yj(i))− (µ̂0(Xi )− µ̂0(Xj(i))),

where µ0(x) = E [Y |X = x ,D = 0] is the population regression function
under the control condition and µ̂0 is an estimate of µ0.

Xi − Xj(i) is often referred to as the matching discrepancy.

These “bias-corrected” matching estimators behave well even if µ0 is
estimated using a simple linear regression (ie. µ0(x) = β0 + β1x) (Abadie
and Imbens, 2005)
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Matching with Bias Correction

Each treated observation contributes

µ0(Xi )− µ0(Xj(i))

to the bias.

Bias-corrected matching:

τ̃ATT =
1

N1

∑
Di=1

(
(Yi − Yj(i))− (µ̂0(Xi )− µ̂0(Xj(i)))

)
The large sample distribution of this estimator (for the case of matching
with replacement) is (basically) standard normal. µ0 is usually estimated
using a simple linear regression (ie. µ0(x) = β0 + β1x).

In R: Match(Y,Tr, X,BiasAdjust = TRUE)
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Bias Adjustment with Matched Data

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 6 ? 1 3
2 1 ? 1 1
3 0 ? 1 10

4 0 0 2
5 9 0 3
6 1 0 8

What is τ̃ATT = 1
N1

∑
Di=1

(
(Yi − Yj(i))− (µ̂0(Xi )− µ̂0(Xj(i)))

)
?
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Bias Adjustment with Matched Data

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 6 9 1 3
2 1 0 1 1
3 0 1 1 10

4 0 0 2
5 9 0 3
6 1 0 8

What is τ̃ATT = 1
N1

∑
Di=1

(
(Yi − Yj(i))− (µ̂0(Xi )− µ̂0(Xj(i)))

)
?

Estimate µ̂0(x) = β0 + β1x = 5− .4x .

Now plug in:

τ̂ATT = 1/3{((6− 9)− (µ̂0(3)− µ̂0(3)))

+ ((1− 0)− (µ̂0(1)− µ̂0(2)))

+ ((0− 1)− (µ̂0(10)− µ̂0(8)))}
= −0.86

Unadjusted: 1/3((6− 9) + (1− 0) + (0− 1)) = −1
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Bias Adjustment with Matched Data
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Before Matching
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After Matching
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After Matching: Imputation Function
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After Matching: Imputation of missing Y0
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After Matching: No Overlap in Y0
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After Matching: Imputation of missing Y0
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After Matching: Imputation of missing Y0
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Choices when Matching

With or Without Replacement?

How many matches?

Which Matching Algorithm?

Genetic Matching

Kernel Matching

Full Matching

Coarsened Exact Matching

Matching as Pre-processing

Propensity Score Matching

Use whatever gives you the best balance! Checking balance is
important to get a sense for how much extrapolation is needed

Should check balance on interactions and higher moments

With insufficient overlap, all adjustment methods are problematic
because we have to heavily rely on a model to impute missing
potential outcomes.
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Balance ChecksHansen: Full Matching in an Observational Study 615

S( j) entails U(i) = U( j). When S subdivides U, for each
matched set M of S there is a stratum U of U, that is, U =
U−1[s] for some s ≥ 1, such that M ⊆ U. Given a stratifi-
cation U, call the ratio of treated subjects to controls in U
the U-treatment odds for stratum U. When S subdivides U,
a matched set M of S has both S-treatment odds, dS(M),
and U-treatment odds, dU(M), namely the U-treatment odds
for the stratum U of U that contains it. In the gender eq-
uity example, the null stratification U0 : {A, B, C, D, V, W, X,
Y,Z} �→ {1} is subdivided by Sr . Regarding women as treated
and men as control subjects, the U0-treatment odds for U0’s
lone stratum, dU0 ({A, B, C, D, V, W, X, Y, Z}), are 4 : 5, as are
the U0-treatment odds in each of Sr’s matched sets; but Sr’s
three matched sets have Sr-treatment odds of dSr ({A, V, W}) =
1 : 2, dSr ({B, X, Y}) = 1 : 2, and dSr ({C, D, Z}) = 2 : 1.

A matching S that subdivides U respects a thickening cap
of u, u ≥ 1, if the S- and U-treatment odds obey the relation

dS(M) ≤
{⌈

udU(M)
⌉

: 1, udU(M) > 1

1 :
⌊(

udU(M)
)−1⌋

, udU(M) ≤ 1
(4)

for each matched set M of S. Such an S nowhere increases the
ratio of treated to control subjects to more than roughly u ·100%
of what it would have been under U. As a subdivision of the
null stratification U0, the restricted full matching Sr respects a
thickening cap of 2.

Similarly, the subdivision of U into S conforms to a thinning
cap of l if 0 ≤ l ≤ 1 and for each matched set M of S,

dS(M) ≥
{⌊

ldU(M)
⌋

: 1, ldU(M) > 1

1 :
⌈(

ldU(M)
)−1⌉

, ldU(M) ≤ 1.
(5)

As a subdivision of U0, Sr holds to a thinning cap of 1/2.
An [l,u]-subdivision of U is a subdivision of U respecting a

thinning cap of l and a thickening cap of u. An optimal [l,u]-
subdivision of U is an [l,u]-subdivision of U with minimal net
discrepancy [cf. (3)] among full matches that subdivide U and
conform to thinning and thickening caps of l and u. Sr is an
optimal [.5,2]-subdivision of U0.

3.2 Restricted Full Matching for the
Board Sample

Now let U denote the Race×SES subclassification (Sec. 1.2).
We seek an optimal [l,u]-subdivision of U, l < 1 and u > 1,
that adequately balances each covariate while keeping l and u
as close to one as is consistent with this aim.

One-half and two are a natural pair of caps with which to
start: Alter the treatment odds within strata, they say, by no
more than a factor of 2. Against the optimal [.5,2] full match,
testing each of the 27 covariates separately using statistics of
the Mantel–Haenszel (MH) type (cf. Sec. 1.2) yields no results
of significance at the nominal .05 level; only with the parents’
income variable is there a hint of association (M2/df = 8.9/4,
p = .06). Alternatively, the battery of tests may be directed
at subjects without missing covariate data. The 27 additional
MH tests that exclude those matched sets containing a subject
missing data on the relevant covariate also fail, for the most
part, to reject null hypotheses of no association. The excep-
tions are a test giving some thin evidence of association be-
tween the parents’ income variable and treatment status, with

Figure 3. Standardized Biases Without Stratification or Matching,
Open Circles, and Under the Optimal [.5, 2] Full Match, Shaded Circles.

M2/df = 7.0/3 and p = .07, and a significant test of associ-
ation between treatment status and years of foreign language,
with M2/df = 4.8/1 and p = .03. In short, of 27 covariates,
one associates with treatment status at the .1 level, but not at
the .05 level, and another may appear associated with treatment
status at the .05, but not at the .01, level, depending on how
one handles missing values. One might expect similar results
under random assignment. Figure 3 depicts the optimal [.5,2]
full match’s treatment–control group balance in each category
of each of the 27 covariates, also showing imbalances prior to
matching or stratification, for comparison.

In this application, a search among full matches optimal rel-
ative to various thinning and thickening caps terminated with
the optimal [.5,2] full match. The search varied the thickening
cap u first, before imposing a thinning cap, because under ETT
weightings of stratum effects, u’s impact on precision is greater
than that of the thinning cap l: It is readily confirmed using
(2) that replacing a 1 : 1 and a 1 : 5 stratum with two 1 : 3 strata
yields much more precision than does replacing a 1 : 10 and a
1 : 50 stratum with two 1 : 30 strata. When U is optimally subdi-
vided with thickening caps decreasing from ∞ to 10(= 10/1),
to 5(= 10/2), to 10/3, to 10/4 and then to 10/5 or 2, ETT-
weighted precision increases while none of the 54 MH statistics
for the resulting full matches become significant at the .1 level.
The optimal [0,10/6] full matching is still more precise, but
because it has MH statistics that are significant at the .1 and .05
levels, we fix the thickening cap at 2.

This leads us to compare optimal [.2,2], [.3,2], . . . , and
[.7,2] full matchings. The first three of these have no MH sta-
tistics that are significant at the .1 level, and the last two each
have at least two MH statistics significant at the .05 level. Recall
that the optimal [.5,2] matching had one MH statistic signifi-
cant at the .05 level and two more significant at the .1 level,
an acceptably small degree of confounding of covariates with
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TABLE 2. Balance Summary Statistics and Tests: Russian and Chechen Sweeps

Pretreatment Mean Mean Mean Std. Rank Sum K-S
Covariates Treated Control Difference Bias Test Test

Demographics
Population 8.657 8.606 0.049 0.033 0.708 0.454
Tariqa 0.076 0.048 0.028 0.104 0.331 —–
Poverty 1.917 1.931 −0.016 −0.024 0.792 1.000
Spatial
Elevation 5.078 5.233 −0.155 −0.135 0.140 0.228
Isolation 1.007 1.070 −0.063 −0.096 0.343 0.851
Groznyy 0.131 0.138 −0.007 −0.018 0.864 —–
War Dynamics
TAC 0.241 0.282 −0.041 −0.095 0.424 —–
Garrison 0.379 0.414 −0.035 −0.072 0.549 —–
Rebel 0.510 0.441 0.070 0.139 0.240 —–
Selection
Presweep violence 3.083 3.117 −0.034 0.009 0.454 0.292
Large-scale theft 0.034 0.055 −0.021 −0.115 0.395 —–
Killing 0.117 0.090 0.027 0.084 0.443 —–
Violence Inflicted
Total abuse 0.970 0.833 0.137 0.124 0.131 0.454
Prior sweeps 1.729 1.812 −0.090 −0.089 0.394 0.367
Other
Month 7.428 6.986 0.442 0.130 0.260 0.292
Year 2004.159 2004.110 0.049 0.043 0.889 1.000
Note: 145 matched pairs. Matching with replacement.

Theft, where concern over selection effects makes it
imperative to remove imbalance across groups.

Table 2 reports the closeness of the matched groups
using three different balance tests.14 Standardized bias
is the difference in means of the treated and control
groups, divided by the standard deviation of the treated
group. A value of ≤0.25—–signifying that the remaining
difference between groups is less than one fourth of a
standard deviation apart is considered a “good match”
(Ho et al. 2007, 23fn15). Wilcoxon rank-sum test values
are also provided to determine if we can reject the
null hypothesis of equal population medians. Finally,
Kolmogorov-Smirnov equality of distribution tests are
also generated for continuous variables; values ≤.1 sug-
gest that the distribution of means is highly dissimilar,
whereas values approaching 1 signify increasing similar
distributions (Sekhon 2006).

As Table 2 confirms, these pairs are closely matched,
meeting or exceeding every standard for variance
across all three balance tests. Closeness of fit between
groups is especially important for two clusters of co-
variates, namely, those dealing with why the sweep
was conducted (treatment assignment) and the level
of violence inflicted by the sweeping soldiers. Prior at-
tacks, for example, are almost identical across groups,
removing the concern that Russian and Chechen units
are selecting into different threat environments.15 Rus-
sian and Chechen operations are also characterized by

14 Prematching balance tests are provided in the Appendix.
15 This is especially important for deriving correct causal inferences
because difference-in-difference estimates are very sensitive to the
functional form posited if average levels of the outcome (insurgent
violence) are very different prior to the treatment (the sweep itself).

similar reported levels of large-scale theft and deaths
among the targeted populations, thereby controlling, if
only partially, for the possibility that these operations
were driven by different motives.

We must also ensure that these pairs are closely
matched on the level of abuse inflicted by sweeping sol-
diers if we are to separate the effects of ethnicity from
the magnitude of violence visited on the targeted pop-
ulations. Here, too, the control and treated groups are
highly similar. For example, the average number of in-
dividuals abused per sweep is comparable across units,
with Russians abusing 10 individuals, and Chechens
11, during each operation. Moreover, Chechen-swept
villages had been the site of 7.72 prior operations on
average, whereas Russian-swept villages had similarly
been “swept” an average of 8.7 times in the past. Re-
maining differences in sociodemographic and spatial
variables are negligible: Russian-swept villages are .44
meters higher on average than Chechen-swept coun-
terparts, for example, and possess an average of 136
more individuals.16

Finally, these observations were also matched on
identical 90 day pre- and posttreatment windows within
the same year to control for maturation effects or any
potential bias created by a common trend not pro-
duced by the treatment itself. In actuality, the paired
sweeps are occurring about two weeks apart in time.17

16 These groups are so tightly matched in part because, rather than
partitioning Chechnya into “Russian” and “Chechen” zones, the
same villages are being swept over time by both types of units.
17 This requirement creates the need to match with replacement.
Although there are many more control than treated observations in

8
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Identification with Propensity Scores

Definition

Propensity score is defined as the selection probability conditional on the
confounding variables: π(X ) = Pr(D = 1|X )

Identification Assumption

1 (Y1,Y0)⊥⊥D|X (selection on observables)

2 0 < Pr(D = 1|X ) < 1 with probability one (common support)

Identfication Result

Under selection on observables we have (Y1,Y0)⊥⊥D|π(X ), ie.
conditioning on the propensity score is enough to have independence
between the treatment indicator and potential outcomes. Implies
substantial dimension reduction.
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Matching on the Propensity Score

Corollary

If (Y1,Y0)⊥⊥D|X, then

IE[Y |D = 1, π(X ) = π0]− IE[Y |D = 0, π(X ) = π0] =

IE[Y1 − Y0|π(X ) = π0]

Suggests a two step procedure to estimate causal effects under selection
on observables:

1 Estimate the propensity score π(X ) = P(D = 1|X ) (e.g. using
logit/probit regression, machine learning methods, etc)

2 Match or subclassify on propensity score.
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Estimating the Propensity Score

Given selection on observables we have (Y1,Y0)⊥⊥D|π(X ) which
implies the balancing property of the propensity score:

Pr(X |D = 1, π(X )) = Pr(X |D = 0, π(X ))

We can use this to check if our estimated propensity score actually
produces balance: P(X |D = 1, π̂(X )) = P(X |D = 0, π̂(X ))

To properly model the assignment mechanism, we need to include
important confounders correlated with treatment and outcome

Need to find the correct functional form, miss-specified propensity
scores can lead to bias. Any methods can be used (probit, logit, etc.)

Estimate 7→ Check Balance 7→ Re-estimate 7→ Check Balance
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Example: Blattman (2010)

pscore.fmla <- as.formula(paste("abd~",paste(names(covar),collapse="+")))

abd <- data$abd

pscore_model <- glm(pscore.fmla, data = data,

family = binomial(link = logit))

pscore <- predict(pscore_model, type = "response")
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Blattman (2010): Match on the Propensity Score

match.pscore <- Match(Tr=abd, X=pscore, M=1, estimand="ATT")
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Blattman (2010): Check Balance

match.pscore <-

+ MatchBalance(abd ~ age, data=data, match.out = match.pscore)

***** (V1) age *****

Before Matching After Matching

mean treatment........ 21.366 21.366

mean control.......... 20.151 20.515

std mean diff......... 24.242 16.976

var ratio (Tr/Co)..... 1.0428 0.98412

T-test p-value........ 0.0012663 0.0034409

KS Bootstrap p-value.. 0.016 0.034

KS Naive p-value...... 0.024912 0.070191

KS Statistic.......... 0.11227 0.077899
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Blattman (2010): Mahalanobis Distance Matchng

match.mah <- Match(Tr=abd, X=covar, M=1, estimand="ATT", Weight = 3)

MatchBalance(abd ~ age, data=data, match.out = match.mah)

***** (V1) age *****

Before Matching After Matching

mean treatment........ 21.366 21.366

mean control.......... 20.151 21.154

std mean diff......... 24.242 4.2314

var ratio (Tr/Co)..... 1.0428 1.0336

T-test p-value........ 0.0012663 3.0386e-05

KS Bootstrap p-value.. 0.008 0.798

KS Naive p-value...... 0.024912 0.94687

KS Statistic.......... 0.11227 0.034261
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Blattman (2010): Genetic Matching

genout <- GenMatch(Tr=abd,X=covar,BalanceMatrix=covar,estimand="ATT",

pop.size=1000)

match.gen <- Match(Tr=abd, X=covar,M=1,estimand="ATT",Weight.matrix=genout)

gen.bal <- MatchBalance(abd~age,match.out=match.gen,data=covar)

***** (V1) age *****

Before Matching After Matching

mean treatment........ 21.366 21.366

mean control.......... 20.151 21.225

std mean diff......... 24.242 2.8065

var ratio (Tr/Co)..... 1.0428 1.1337

T-test p-value........ 0.0012663 0.21628

KS Bootstrap p-value.. 0.008 0.454

KS Naive p-value...... 0.024912 0.68567

KS Statistic.......... 0.11227 0.046512
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Identification under Selection on Observables: Regression

Consider the linear regression of Yi = β0 + τDi + X ′i β + εi .
Given selection on observables, there are mainly three identification
scenarios:

1 Constant treatment effects and outcomes are linear in X

τ will provide unbiased and consistent estimates of ATE.

2 Constant treatment effects and unknown functional form

τ will provide well-defined linear approximation to the average causal
response function IE[Y |D = 1,X ]− IE[Y |D = 0,X ]. Approximation
may be very poor if IE[Y |D,X ] is misspecified and then τ may be
biased for the ATE.

3 Heterogeneous treatment effects (τ differs for different values of X )

If outcomes are linear in X , τ is unbiased and consistent estimator for
conditional-variance-weighted average of the underlying causal effects.
This average is often different from the ATE.
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Identification under Selection on Observables: Regression

Identification Assumption

1 Constant treatment effect: τ = Y1i − Y0i for all i

2 Control outcome is linear in X : Y0i = β0 + X ′i β + εi with εi⊥⊥Xi (no
omitted variables and linearly separable confounding)

Identfication Result

Then τATE = IE[Y1 − Y0] is identified by a regression of the observed
outcome on the covariates and the treatment indicator
Yi = β0 + τDi + X ′i β + εi
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Regression with Heterogeneous Effects

What is regression estimating when we allow for heterogeneity?

Suppose that we wanted to estimate τOLS using a fully saturated
regression model:

Yi =
∑
x

Bxiβx + τOLSDi + ei

where Bxi is a dummy variable for unique combination of Xi .

Because this regression is fully saturated, it is linear in the covariates
(i.e. linearity assumption holds by construction).
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Heterogenous Treatment Effects

With two X strata there are two stratum-specific average causal effects that are averaged to
obtain the ATE or ATT.

Subclassification weights the stratum-effects by the marginal distribution of X , i.e. weights are
proportional to the share of units in each stratum:

τATE = (IE[Y |D = 1,X = 1]− IE[Y |D = 0,X = 1])Pr(X = 1)

+ (IE[Y |D = 1,X = 2]− IE[Y |D = 0,X = 2])Pr(X = 2)

Regression weights by the marginal distribution of X and the conditional variance of Var[D|X ]
in each stratum:

τOLS = (IE[Y |D = 1,X = 1]− IE[Y |D = 0,X = 1])
Var[D|X = 1]Pr(X = 1)∑
X Var [D|X = x] Pr(X = x)

+ (IE[Y |D = 1,X = 2]− IE[Y |D = 0,X = 2])
Var[D|X = 2]Pr(X = 2)∑
X Var[D|X = x] Pr(X = x)

So strata with a higher Var[D|X ] receive higher weight. These are the strata with
propensity scores close to .5

Strata with propensity score close to 0 or 1 receive lower weight

OLS is a minimum-variance estimator of τOLS so it downweights strata where the average
causal effects are less precisely estimated. 97 / 103
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Whenever both weighting components are misaligned (e.g. the PS is close to 0 or 1 for
relatively large strata) then τOLS diverges from τATE or τATT .

We still need overlap in the data (treated/untreated units in all strata of X )! Otherwise
OLS will interpolate/extrapolate → model-dependent results
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Conclusion: Regression

Is regression evil? /

Its ease sometimes results in lack of thinking. So only a little. ,
For descriptive inference, very useful!

Good tool for characterizing the conditional expectation function (CEF)

But other less restrictive tools are also available for that task (machine
learning)

For causal analysis, always need to ask yourself if linearly separable
confounding is plausible.

A regression is causal when the CEF it approximates is causal.

Still need to check common support!

Results will be highly sensitive if the treated and controls are far apart
(e.g. standardized difference above .2)

Think about what your estimand is: because of variance weighting,
coefficient from your regression may not capture ATE if effects are
heterogeneous
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Dehejia and Wabha (1999) Results
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