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Purpose, Scope, and Examples

Goal in causal inference is to assess the causal effect of some
potential cause (e.g. an institution, intervention, policy, or event) on
some outcome.

Examples of such research questions include...

What is the effect of:
political institutions on corruption?
voting technology on voting fraud?
incumbency status on vote shares?
peacekeeping missions on peace?
mass media on voter preferences?
church attendance on turnout?
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What Do We Mean by Causal Inference?

As in all statistics, we must begin with a model of the reality we are
interested in studying, such as:

yi = α+ τDi + Xiβ + εi

Key problems with regression when used as a causal inference
strategy:

Endogeneity and omitted variable bias

Misspecified functional form

Heterogenous treatment effects (when treatment assignment
process unknown)
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Neyman-Rubin Potential Outcomes Model

Neyman

Rubin
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Neyman Urn Model
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Causality with Potential Outcomes

Definition (Treatment)
Di : Indicator of treatment intake for unit i

Di =

{
1 if unit i received the treatment
0 otherwise.

Definition (Outcome)
Yi : Observed outcome variable of interest for unit i . The treatment
occurs temporally before the outcome.

Definition (Potential Outcomes)
Y0i and Y1i : Potential outcomes for unit i

Ydi =

{
Y1i Potential outcome for unit i with treatment
Y0i Potential outcome for unit i without treatment
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Causality with Potential Outcomes

Definition (Causal Effect)
Causal effect of the treatment on the outcome for unit i is the
difference between its two potential outcomes:

τi = Y1i − Y0i

Assumption
Observed outcomes are realized as

Yi = Di · Y1i + (1− Di) · Y0i so Yi =

{
Y1i if Di = 1
Y0i if Di = 0
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Causal Inference as a Missing Data Problem

Realized 
Outcome:

Yi

Yi = DiY1i+(1-Di)Y0i

Di=1

Di=0

Definition (Fundamental Problem of Causal Inference)
We cannot observe both potential outcomes. So how can we calculate
τi = Y1i − Y0i?
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Fundamental Problem of Causal Inference

Imagine a study population with 4 units:

i Di Y1i Y0i τi
1 1 10 4 6
2 1 1 2 -1
3 0 3 3 0
4 0 5 2 3

What do we observe?

i Di Y1i Y0i τi Yi
1 1 10 ? ? 10
2 1 1 ? ? 1
3 0 ? 3 ? 3
4 0 ? 2 ? 2

Causal inference is difficult because it involves missing data.
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Causal Inference as a Missing Data Problem

How can we calculate τi = Y1i − Y0i?

Homogeneity is one solution:

If {Y1i ,Y0i} is constant across individuals, then cross-sectional
comparisons will recover τi

If {Y1i ,Y0i} is constant across time, then before and after
comparisons will recover τi

In social phenomena, unfortunately, homogeneity is very rare.
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Other Assumptions

Assumption

Observed outcomes are realized as

Yi = Di · Y1i + (1− Di) · Y0i

Embedded in this formulation is the assumption that potential outcomes
for unit i are unaffected by treatment assignment for unit j .

Assumption known by several names:

Stable Unit Treatment Value Assumption (SUTVA)
No interference
Individualized Treatment Response

Examples: vaccination, fertilizer on plot yield, communication
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Potential Outcomes with Interference

Let D = {Di ,Dj} be the set of vectors of treatment assignments for two units i
(me) and j (you).

How many elements in D?

D = {(Di = 0,Dj = 0), (Di = 1,Dj = 0), (Di = 0,Dj = 1), (Di = 1,Dj = 1)}

How many potential outcomes for unit i?

Y1i(D) =

{
Y1i(1,1)
Y1i(1,0)

Y0i(D) =

{
Y0i(0,1)
Y0i(0,0)
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Potential Outcomes with Interference

How many causal effects for unit i?

τi(D) =



Y1i(1,1)− Y0i(0,0)
Y1i(1,1)− Y0i(0,1)
Y1i(1,0)− Y0i(0,0)
Y1i(1,0)− Y0i(0,1)
Y1i(1,1)− Y1i(1,0)
Y0i(0,1)− Y0i(0,0)

How many potential outcomes are observed for unit i?

Since we only observe one of the four potential outcomes, the missing data
problem for causal inference is even more severe.
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Potential Outcomes with Interference

The No Interference assumption states that unit i ’s potential outcomes
depend on Di , not D:

Y1i(1,1) = Y1i(1,0) and Y0i(0,1) = Y0i(0,0)

This assumption furthermore allows us to define the effect for unit i as
τi = Y1i − Y0i .

No interference is an example of an exclusion restriction. We rely on
outside information to rule out the possibility of certain causal effects (e.g.
you taking the treatment has no effect on my potential outcomes).

Note that traditional models like regression also involve an implicit SUTVA
assumption (Yi depends on Xi )

Mummolo (Stanford) 15 / 32



Potential Outcomes with Interference

The No Interference assumption states that unit i ’s potential outcomes
depend on Di , not D:

Y1i(1,1) = Y1i(1,0) and Y0i(0,1) = Y0i(0,0)

This assumption furthermore allows us to define the effect for unit i as
τi = Y1i − Y0i .

No interference is an example of an exclusion restriction. We rely on
outside information to rule out the possibility of certain causal effects (e.g.
you taking the treatment has no effect on my potential outcomes).

Note that traditional models like regression also involve an implicit SUTVA
assumption (Yi depends on Xi )

Mummolo (Stanford) 15 / 32



Back to the Neyman Urn Model

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0Y1 Y0

Y1 Y0
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Estimands
Because τi are unobservable, we shift what we are interested in to:

Definition (Average Treatment Effect (ATE))

τATE = Average of all treatment potential outcomes −
Average of all control potential outcomes

or

τATE =
1
N

N∑
i

Y1i −
1
N

N∑
i

Y0i

or

τATE = E [Y1i − Y0i ]

or

τATE = E [τi ]

Mummolo (Stanford) 17 / 32



Average Treatment Effect

Imagine a study population with 4 units:

i Di Y1i Y0i τi
1 1 10 4 6
2 1 1 2 -1
3 0 3 3 0
4 0 5 2 3

What is the ATE?

E [Y1i − Y0i ] = 1/4× (6 +−1 + 0 + 3) = 2

Note: Average effect is positive, but τi are negative for some units!
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Probability Mass Function

Definition
Let Y be a discrete random variable. We usually refer to PY as the
probability mass function (PMF): PY (y) = Pr(Y = y)

Example: Two coin flips where Y is the total number of heads

PY (y) =


1/4 y = 0
1/2 y = 1
1/4 y = 2

Required restrictions on PY (y)
PY (y) ≥ 0∑

all y PY (y) = 1.
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PMF Plot

●

●

●

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

P
_Y

(y
)

Mummolo (Stanford) 20 / 32



Expected Value Operator

We are often interested in particular features of the probability
distribution of a random variable in the population of interest

For a random variable Y the most widely used location measure is its
expected value (or the average), denoted by E [Y ]

Definition

For a discrete random variable E [Y ] is

E [Y ] =
∑
all y

y PY (y).

where PY (y) is the PMF of Y .
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Expectation: Example

Suppose X is a discrete random variable that can take values of 0, 1,
and 2. The probability function of X is given by:

fX (x) =


0.20 if x = 0
0.45 if x = 1
0.35 if x = 2

What is E [X ] =
∑

all x x fX (x)?

The expected value of X is:

E [X ] = 0× fX (0) + 1× fX (1) + 2× fX (2)
= 0× 0.20 + 1× 0.45 + 2× 0.35
= 1.15
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Properties of Expected value operator

Theorem (Linearity of Expected Value Operator)
Let X be a random variable and a and b be constants. Then for any
function g(x) whose expectation exists:

E [a g(x) + b] = a E [g(x)] + b

Implies that for any linear function of Y the expected value can be
easily evaluated, for example:

E[Y+ c]= E[Y]+c
E[Y + X] = E[Y]+E[X]
E[Y - X] = E[Y]-E[X]
E[aY] = aE[Y]
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Average Treatment Effect

Imagine a study population with 4 units:

i Di Y1i Y0i τi
1 1 10 4 6
2 1 1 2 -1
3 0 3 3 0
4 0 5 2 3

E [τi ] = 1/4× (6 +−1 + 0 + 3) = 2

Mummolo (Stanford) 24 / 32



Conditional Expectation

Definition (Conditional Expectation Discrete Case)
Let Y and X be discrete RVs, then the conditional expectation of Y
given the event X = x is given by:

E [Y |X = x ] =
∑

y

y P(Y = y |X = x) =
∑

y

y fY |X (y |x)

i Di Y1i Y0i τi
1 1 10 4 6
2 1 1 2 -1
3 0 3 3 0
4 0 5 2 3

E [Y1|D = 1] = (10 + 1)/2 = 5.5
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Naive Comparison: Difference in Means

Comparisons between observed outcomes of treated and control units can
often be misleading.

E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1i |Di = 1]− E [Y0i |Di = 0]

= E [Y1i |Di = 1]− E [Y0i |Di = 0] + (E [Y0i |Di = 1]− E [Y0i |Di = 1])︸ ︷︷ ︸
0

= E [Y1i − Y0i |Di = 1]︸ ︷︷ ︸
ATT

+ {E [Y0i |Di = 1]− E [Y0i |Di = 0]}︸ ︷︷ ︸
BIAS

Bias term unlikely to be 0 in most applications.
Selection into treatment is often associated with the potential outcomes.
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Selection Bias

E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1i |Di = 1]− E [Y0i |Di = 0]

= E [Y1i |Di = 1]− E [Y0i |Di = 0] + (E [Y0i |Di = 1]− E [Y0i |Di = 1])︸ ︷︷ ︸
0

= E [Y1i − Y0i |Di = 1]︸ ︷︷ ︸
ATT

+ {E [Y0i |Di = 1]− E [Y0i |Di = 0]}︸ ︷︷ ︸
BIAS

Example: Church Attendance and Political Participation

Churchgoers are likely to differ from non-churchgoers on a range of
background characteristics (e.g. civic duty).

Given these differences, turnout for churchgoers would be higher than
for non-churchgoers even if churchgoers never attended church or
church had zero mobilizing effect (E [Y0i |Di = 1]− E [Y0i |Di = 0] > 0).
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ATT

+ {E [Y0i |Di = 1]− E [Y0i |Di = 0]}︸ ︷︷ ︸
BIAS

Example: Gender Quotas and Redistribution/Representation for Women

Countries with gender quotas are likely countries where women are
politically mobilized.

Given this difference, policies targeted towards women are more
common in quota countries even if these countries had not adopted
quotas (E [Y0i |Di = 1]− E [Y0i |Di = 0] > 0).
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The Assignment Mechanism

Since missing potential outcomes are unobservable we must make
assumptions to fill them in, i.e. estimate missing potential outcomes.

In the causal inference literature, we typically make assumptions about
the assignment mechanism to do so.

Definition (Assignment Mechanism)

Assignment mechanism is the procedure that determines which units are
selected for treatment. Examples include:

random assignment

selection on observables

selection on unobservables

Most statistical models of causal inference attain identification of
treatment effects by restricting the assignment mechanism in some way.
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Assignment Mechanism

Imagine a study population with 4 units:

i Pr(Di = 1) Di Y1i Y0i τi
1 ? 1 10 4 6
2 ? 1 1 2 -1
3 ? 0 3 3 0
4 ? 0 5 2 3
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Causal Inference Workflow
Causal Inference Workflow

Data  Estimator  Estimate

Identification Strategy

Quantity of Interest

Ideal Experiment

Causal Relationship
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Summing Up: Neyman-Rubin causal model

Useful for studying the “effects of causes,” less so for the “causes of
effects.”

No assumption of homogeneity, allows for causal effects to vary unit by
unit.

No single “causal effect,” thus the need to be precise about the
target estimand.

Distinguishes between observed outcomes and potential outcomes.

Causal inference is a missing data problem: we typically make
assumptions about the assignment mechanism to go from descriptive
inference to causal inference.
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