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Main Randomization Designs

1 Complete randomization

Of N units, m are randomly assigned to treatment and N −m to
control

2 Block randomization

N units are partitioned into J subgroups (called strata or blocks) and
complete randomization occurs within each block

3 Cluster randomization

Individual units are nested in clusters, and complete randomization
occurs at the level of the clusters
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Outline

1 Block randomization

2 Cluster Randomization
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Block Randomization

Imagine you have data on the units that you are about to randomly
assign. Why leave it to “pure” chance to balance the observed
characteristics?

In blocking we pre-stratify the sample into subgroups, and then
randomize separately within each subgroup

Two main motivations for blocking:

1 Blocking reduces sampling uncertainty and improves precision

Enforces balance on blocking factors by design and rules out
randomizations that may produce outlandish results

2 Blocking ensures that certain subgroups are available for analysis

Makes it clear a priori which subsets will be analyzed
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All Stores Block A Block B
store block Y1 Y0 Y1 Y0 Y1 Y0

1 A 4 1 4 1
2 A 5 3 5 3
3 A 6 2 6 2
4 A 4 1 4 1
5 A 3 2 3 2
6 A 2 1 2 1
7 B 10 8 10 8
8 B 13 10 13 10
9 B 11 9 11 9
10 B 10 8 10 8
11 B 12 10 12 10
12 B 11 11 11 11
Mean 7.6 5.5 4.0 1.7 11.2 9.3
Variance 14.2 15.6 1.7 0.6 1.1 1.2

Under complete randomization with 6 treated stores we get:

ATECR = E [Y1]− E [Y0] = 7.6− 5.5 ≈ 2.08

SE
ÂTE

=

√
1

N − 1

(
m

N −m
Var [Y0] +

N −m

m
Var [Y1] + 2Cov [Y1,Y0]

)

=

√
1

12− 1

(
6

12− 6
15.6 +

12− 6

6
14.2 + 2 ∗ 14.3

)
≈ 2.30
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Effect and Standard Error Under Block Randomization

ATE under Block Randomization
Given N units that are partitioned into J blocks of size Nj , the average treatment
effect if given by

ATEBR =
J∑

j=1

Nj

N
ATEj

Standard error for ATE under Block Randomization
The true standard error of the estimated ATE is given by

SE
ÂTEBR

=

√√√√ J∑
j=1

(
Nj

N

)2

SE 2
ÂTE j
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All Stores Block A Block B
store block Y1 Y0 Y1 Y0 Y1 Y0

1 A 4 1 4 1
2 A 5 3 5 3
3 A 6 2 6 2
4 A 4 1 4 1
5 A 3 2 3 2
6 A 2 1 2 1
7 B 10 8 10 8
8 B 13 10 13 10
9 B 11 9 11 9
10 B 10 8 10 8
11 B 12 10 12 10
12 B 11 11 11 11
Mean 7.6 5.5 4.0 1.7 11.2 9.3
Variance 14.2 15.6 1.7 0.6 1.1 1.2

Under block randomization with 3 treated stores per block we get:

ATEBR =
J∑

j=1

Nj

N
ATEj =

6

12
2.33 +

6

12
1.83 ≈ 2.08

SE
ÂTEBR

=

√√√√ J∑
j=1

(
Nj

N

)2

SE2
ÂTE j

=

√(
6

12

)2

(0.80)2 +

(
6

12

)2

(0.88)2 ≈ 0.84
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Block Randomization
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Sampling Distributions: Complete vs. Blocked
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Estimation: “As ye randomize, so shall ye analyze”

Difference-in-Means Estimator for Block Randomization
Given J blocks of size Nj with mj treated units the ATE can be estimated using

ÂTEBR =
J∑

j=1

Nj

N
ÂTE j =

J∑
j=1

Nj

N
(Ȳ1j − Ȳ0j)

with block specific means Ȳdj = 1
Ndj

∑
Dij=d Yij

Estimator for Standard Error of ATE under Block Randomization

ŜE
ÂTEBR

=

√√√√ J∑
j=1

(
Nj

N

)2

ŜE
2

ÂTE j
=

√√√√ J∑
j=1

(
Nj

N

)2
(
σ̂2
Yij |Dij=1

mj
+
σ̂2
Yij |Dij=0

Nj −mj

)
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Estimation in Blocked Design

Regression Estimator for Block Randomization

Given J blocks of size Nj with mj treated units, the ATE can be estimated using
the following regression

Yi = β1 + αBRDi + β2J2 + β3J3 + ...+ βJJJ + ui

where J2, J3, ..., JJ are dummy variables that indicate each block.

This regression estimator is valid if the treatment probability pj = mj/Nj is
the same in all blocks.

Regression weights each block specific ÂTE j by (Nj/N)pj(1 − pj)

If pj varies across blocks, regression can lead to bias since treatment
assignment is correlated with block characteristics

Need to use weighted regression with unit weights

wij ≡
(

1

pij

)
Di +

(
1

1 − pij

)
(1 − Di )
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Blocking

What to block on?

“Block what you can, randomize what you can’t”

The baseline of the outcome variable and other main predictors

Variables desired for subgroup analysis

How to block?

Stratification

Pair-matching

Check: blockTools library
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Example: Fair Trade Labeling Experiment

Label Experiment

Treatment Control
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Example: Fair Trade Labeling Experiment
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Example: Fair Trade Labeling Experiment

Matched Pairs: Phase 1
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Example: Fair Trade Labeling Experiment

R Code
> d <- read.dta("FTdata.dta")

> head(d)

store pair FTweek lnsalesd

1 1 1 1 3.20

2 4 1 0 2.77

3 6 2 1 4.18

4 9 2 0 4.04

5 21 3 1 4.30

6 24 3 0 3.93
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Example: Fair Trade Labeling Experiment

R Code
> cr.out <- lm(lnsalesd~FTweek,data=d)

> coeftest(cr.out,vcov = vcovHC(cr.out, type = "HC1"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.35000 0.16079 27.0537 <2e-16 ***

FTweek 0.12385 0.21424 0.5781 0.5686

---
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Example: Fair Trade Labeling Experiment
R Code

> br.out <- lm(lnsalesd~FTweek+as.factor(pair),data=d)

> coeftest(br.out,vcov = vcovHC(br.out, type = "HC1"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.923077 0.162144 18.0277 4.671e-10 ***

FTweek 0.123846 0.060176 2.0581 0.0619840 .

as.factor(pair)2 1.125000 0.159549 7.0511 1.335e-05 ***

as.factor(pair)3 1.130000 0.204440 5.5273 0.0001304 ***

as.factor(pair)4 1.145000 0.231925 4.9369 0.0003439 ***

as.factor(pair)5 1.280000 0.161773 7.9123 4.208e-06 ***

as.factor(pair)6 1.410000 0.169987 8.2948 2.591e-06 ***

as.factor(pair)7 1.575000 0.203689 7.7324 5.317e-06 ***

as.factor(pair)8 1.585000 0.277319 5.7154 9.675e-05 ***

as.factor(pair)9 1.610000 0.169987 9.4713 6.420e-07 ***

as.factor(pair)10 1.795000 0.165195 10.8660 1.450e-07 ***

as.factor(pair)11 1.810000 0.169987 10.6479 1.810e-07 ***

as.factor(pair)12 2.015000 0.164183 12.2729 3.763e-08 ***

as.factor(pair)13 2.070000 0.160298 12.9134 2.127e-08 ***

---
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Example: Fair Trade Labeling Experiment
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Example: Fair Trade Labeling Experiment
R Code

> summary(lm(lnsalesd~as.factor(pair),data=d))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9850 0.1212 24.621 2.72e-12 ***

as.factor(pair)2 1.1250 0.1715 6.562 1.82e-05 ***

as.factor(pair)3 1.1300 0.1715 6.591 1.74e-05 ***

as.factor(pair)4 1.1450 0.1715 6.678 1.52e-05 ***

as.factor(pair)5 1.2800 0.1715 7.466 4.73e-06 ***

as.factor(pair)6 1.4100 0.1715 8.224 1.65e-06 ***

as.factor(pair)7 1.5750 0.1715 9.186 4.77e-07 ***

as.factor(pair)8 1.5850 0.1715 9.245 4.44e-07 ***

as.factor(pair)9 1.6100 0.1715 9.390 3.71e-07 ***

as.factor(pair)10 1.7950 0.1715 10.469 1.05e-07 ***

as.factor(pair)11 1.8100 0.1715 10.557 9.56e-08 ***

as.factor(pair)12 2.0150 0.1715 11.752 2.68e-08 ***

as.factor(pair)13 2.0700 0.1715 12.073 1.94e-08 ***

---

Residual standard error: 0.1715 on 13 degrees of freedom

Multiple R-squared: 0.9474, Adjusted R-squared: 0.8988

F-statistic: 19.5 on 12 and 13 DF, p-value: 2.356e-06
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Outline

1 Block randomization

2 Cluster Randomization
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Unit of Analysis and Randomization

Imagine we consider the effect of school vouchers on academic performance.
Is it better to randomize vouchers to students or to schools?

It depends on the question: Do we want to know how students respond to
new environment or how schools respond to competition?

Choice of analytic level determines what the study has the capacity to
demonstrate.

Analytical level also determines the effective number of observations

Can also help with interference among units (e.g. interactions within and
between schools)
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Variance with Clustered Random Assignment

Assume you randomly assign clusters of units, each cluster has several
individual units, and outcomes are measured at the individual level (e.g.
assign schools and measure students’ test scores)

Since random assignment occurred at the cluster level and units within each
cluster may not be independent, we need to correct our variance estimation
for the clustering

Ignoring the clustering can severely distort/downward bias the true variance

Effectively the number of observations is the number of clusters not the
number of units

A safe bet is always to simply compute the average outcome for each cluster
and then analyze the results using the cluster level averages.
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Estimation with Clustered Random Assignment

Estimator of Standard Error of ATE with Cluster Randomization
Consider K equal-sized clusters, m of which are assigned to treatment. Now
imagine we take cluster-level averages of the outcome variable Y . A conservative
estimator for the standard error of the ATE is given by

ŜE
ÂTE

=

√
N

K (N −m)
V̂ar [Ȳk|Dk=0] +

N

Km
V̂ar [Ȳk|Dk=1]

where Ȳk is the average outcome in the k-th cluster.

With regression we can cluster the standard errors by the cluster unit, which
works if numbers of clusters is large enough

Difference in means estimator for ATE not unbiased if cluster sizes vary with
potential outcomes, but bias vanishes as number of clusters increases

Pick equal sized clusters or block on cluster size if possible
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Example: Kansas City Mobilization Experiment

Kansas City experiment studied a local activist group canvassing on
behalf of a public transportation ballot initiative in the weeks before
the election

28 predominantly African-American precincts (clusters), were
randomly assigned to treatment and control (equal allocation)

Overall there are N = 9, 712 voters in the 28 precincts. Average
number of voters per precincts was 347

Since randomization occurred at the precinct level we need to cluster
the standard errors by precinct or analyze the precinct averages to
adjust for the non-independence.
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Kansas City Mobilization Experiment

R Code
> library(foreign)

> library(lmtest)

> d <- read.dta("Arceneaux_AAAPSSsubset_2005.dta")

>

> head(d[,c("precint","vote03","treatmen")])

precint vote03 treatmen

1 27 1 1

2 9 0 0

3 16 0 1

4 8 1 0

5 8 1 0

6 8 0 0

> table(d$precint)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

655 386 245 364 272 124 288 386 417 336 309 237 487 273 268 434 211

18 19 20 21 22 23 24 25 26 27 28

568 211 496 80 300 416 344 31 491 611 472
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Kansas City Mobilization Experiment

R Code
> out <- lm(vote03~treatmen,data=d)

> coeftest(out)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2912743 0.0067046 43.4436 < 2.2e-16 ***

treatmen 0.0440186 0.0094075 4.6791 2.92e-06 ***

---

28 / 32



Kansas City Mobilization Experiment

R Code
> d.ag <- aggregate(d[,c("vote03","treatmen")],by=list(d$precint),mean)

> head(d.ag)

Group.1 vote03 treatmen

1 1 0.3832061 0

2 2 0.1865285 0

3 3 0.3306122 0

4 4 0.3379121 0

5 5 0.3382353 0

6 6 0.2983871 0

> out2 <- lm(vote03~treatmen,data=d.ag)

> coeftest(out2)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.288516 0.017244 16.7318 1.947e-15 ***

treatmen 0.036294 0.024386 1.4883 0.1487

---
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Kansas City Mobilization Experiment

R Code
> source("vcovCluster.r")

> coeftest(out,vcov = vcovCluster(out, cluster = d$precint))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.291274 0.020785 14.0140 < 2e-16 ***

treatmen 0.044019 0.025163 1.7494 0.08026 .

---
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Conclusion: Experiments

Random assignment solves the identification problem for causal
inference based on minimal assumptions that we can control as
researchers

Random assignment balances observed and unobserved confounders,
which is why it is considered the gold standard for causal inference

Statistical analysis is simple, transparent, and results are typically not
model dependent, since confounders are controlled for “by design”

Design features can help to improve inferences

Always important to think about theory and external validity prior to
experimentation
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