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Selection Bias

Recall the selection problem when comparing the mean outcomes for the
treated and the untreated:

Problem

IE[Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= IE[Y1|D = 1]− IE[Y0|D = 0]

= IE[Y1 − Y0|D = 1]︸ ︷︷ ︸
ATT

+ {IE[Y0|D = 1]− IE[Y0|D = 0]}︸ ︷︷ ︸
BIAS

How can we eliminate the bias term?

As a result of randomization, the selection bias term will be zero

The treatment and control group will tend to be similar along all
characteristics (identical in expectation), including the potential
outcomes under the control condition
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Identification Under Random Assignment

Identification Assumption

(Y1,Y0)⊥⊥D (random assignment)

Identification Result

Problem: τATE = IE[Y1 − Y0] is unobserved. But given random assignment

IE[Y |D = 1] = IE[D · Y1 + (1− D) · Y0|D = 1]

= IE[Y1|D = 1]

= IE[Y1]

IE[Y |D = 0] = IE[D · Y1 + (1− D) · Y0|D = 0]

= IE[Y0|D = 0]

= IE[Y0]

τATE = IE[Y1 − Y0] = IE[Y1]− IE[Y0] = IE[Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means

5 / 181



Identification Under Random Assignment

Identification Assumption

(Y1,Y0)⊥⊥D (random assignment)

Identification Result

Problem: τATE = IE[Y1 − Y0] is unobserved. But given random assignment

IE[Y |D = 1] = IE[D · Y1 + (1− D) · Y0|D = 1]

= IE[Y1|D = 1]

= IE[Y1]

IE[Y |D = 0] = IE[D · Y1 + (1− D) · Y0|D = 0]

= IE[Y0|D = 0]

= IE[Y0]

τATE = IE[Y1 − Y0] = IE[Y1]− IE[Y0] = IE[Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means

6 / 181



Identification Under Random Assignment

Identification Assumption

(Y1,Y0)⊥⊥D (random assignment)

Identification Result

Problem: τATE = IE[Y1 − Y0] is unobserved. But given random assignment

IE[Y |D = 1] = IE[D · Y1 + (1− D) · Y0|D = 1]

= IE[Y1|D = 1]

= IE[Y1]

IE[Y |D = 0] =

IE[D · Y1 + (1− D) · Y0|D = 0]

= IE[Y0|D = 0]

= IE[Y0]

τATE = IE[Y1 − Y0] = IE[Y1]− IE[Y0] = IE[Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means

7 / 181



Identification Under Random Assignment

Identification Assumption

(Y1,Y0)⊥⊥D (random assignment)

Identification Result

Problem: τATE = IE[Y1 − Y0] is unobserved. But given random assignment

IE[Y |D = 1] = IE[D · Y1 + (1− D) · Y0|D = 1]

= IE[Y1|D = 1]

= IE[Y1]

IE[Y |D = 0] = IE[D · Y1 + (1− D) · Y0|D = 0]

= IE[Y0|D = 0]

= IE[Y0]

τATE = IE[Y1 − Y0] = IE[Y1]− IE[Y0] = IE[Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means

8 / 181



Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di

1 3 0 3 1
2 1 1 1 1
3 2 0 0 0
4 2 1 1 0

What is τATE = IE[Y1]− IE[Y0]?
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di

1 3 0 3 1
2 1 1 1 1
3 2 0 0 0
4 2 1 1 0

IE[Y1] 2
IE[Y0] .5

τATE = IE[Y1]− IE[Y0] = 2− .5 = 1.5
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 ? 3 1 ?
2 1 ? 1 1 ?
3 ? 0 0 0 ?
4 ? 1 1 0 ?

IE[Y1] ?
IE[Y0] ?

What is τATE = IE[Y1]−IE[Y0]? In an experiment, the researcher controls the prob-
ability of assignment to treatment for all units P(Di = 1) and by imposing equal
probabilities we ensure that treatment assignment is independent of the potential
outcomes, i.e. (Y1,Y0)⊥⊥D.
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

IE[Y1] 2
IE[Y0] .5

What is τATE = IE[Y1] − IE[Y0]? Given that Di is randomly assigned with
probability 1/2, we have IE[Y |D = 1] = IE[Y1|D = 1] = IE[Y1].

All possible randomizations with two treated units:

Treated Units: 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4
Average Y |D = 1: 2 2.5 2.5 1.5 1.5 2

So IE[Y |D = 1] = IE[Y1] = 2
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

IE[Y1] 2
IE[Y0] .5

By the same logic, we have: IE[Y |D = 0] = IE[Y0|D = 0] = IE[Y0] = .5.

Therefore the average treatment effect is identified:

τATE = IE[Y1]− IE[Y0] = IE[Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

IE[Y1] 2
IE[Y0] .5

Also since IE[Y |D = 0] = IE[Y0|D = 0] = IE[Y0|D = 1] = IE[Y0]
we have that

τATT = IE[Y1 − Y0|D = 1] = IE[Y1|D = 1]− IE[Y0|D = 0]

= IE[Y1]− IE[Y0] = IE[Y1 − Y0]

= τATE
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Identification under Random Assignment

Identification Assumption
(Y1,Y0)⊥⊥D (random assignment)

Identification Result
We have that

IE[Y0|D = 0] = IE[Y0] = IE[Y0|D = 1]

and therefore

E [Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= E [Y1 − Y0|D = 1]︸ ︷︷ ︸
ATT

+ {IE[Y0|D = 1]− IE[Y0|D = 0]}︸ ︷︷ ︸
BIAS

= E [Y1 − Y0|D = 1]︸ ︷︷ ︸
ATT

As a result,

E [Y |D = 1]− IE[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= τATE = τATT
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Identification in Randomized Experiments

Identification Assumption

Given random assignment (Y1,Y0)⊥⊥D

Identification Result

Let FYd
(y) be the cumulative distribution function (CDF) of Yd , then

FY0 (y) = Pr(Y0 ≤ y) = Pr(Y0 ≤ y |D = 0)

= Pr(Y ≤ y |D = 0).

Similarly,
FY1 (y) = Pr(Y ≤ y |D = 1).

So the effect of the treatment at any quantile θ ∈ [0, 1] is identified:

αθ = Qθ(Y1)− Qθ(Y0) = Qθ(Y |D = 1)− Qθ(Y |D = 0)

where FYd
(Qθ(Yd)) = θ.
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Estimation Under Random Assignment

Consider a randomized trial with N individuals.

Estimand

τATE = IE[Y1 − Y0] = IE[Y |D = 1]− IE[Y |D = 0]

Estimator

By the analogy principle we use

τ̂ = Ȳ1 − Ȳ0

Ȳ1 =

∑
Yi · Di∑
Di

=
1

N1

∑

Di=1

Yi ;

Ȳ0 =

∑
Yi · (1− Di )∑

(1− Di )
=

1

N0

∑

Di=0

Yi

with N1 =
∑

i Di and N0 = N − N1.

Under random assignment, τ̂ is an unbiased and consistent estimator of τATE
(IE[τ̂ ] = τATE and τ̂N

p→ τATE .)
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Unbiasedness Under Random Assignment

One way of showing that τ̂ is unbiased is to exploit the fact that under
independence of potential outcomes and treatment status, IE[D] = N1

N and

IE[1− D] = N0
N

Rewrite the estimators as follows:

τ̂ =
1

N

N∑

i=1

(
D · Y1

N1/N
− (1− D) · Y0

N0/N

)

Take expectations with respect to the sampling distribution given by the
design. Under the Neyman model, Y1 and Y0 are fixed and only Di is
random.

IE[τ̂ ] =
1

N

N∑

i=1

(
IE[D] · Y1

N1/N
− IE[(1− D)] · Y0

N0/N

)
=

1

N

N∑

i=1

(Y1 − Y0) = τ
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What is the Estimand?

So far we have emphasized effect estimation, but what about
uncertainty?

In the design based literature, variability in our estimates can arise
from two sources:

1 Sampling variation induced by the procedure that selected the units
into our sample.

2 Variation induced by the particular realization of the treatment variable.

This distinction is important, but often ignored
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What is the Estimand?

Y1 Y0

Y1 Y0
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Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0
Y1 Y0
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SATE and PATE

Typically we focus on estimating the average causal effect in a
particular sample: Sample Average Treatment Effect (SATE)

Uncertainty arises only from hypothetical randomizations.

Inferences are limited to the sample in our study.

Might care about the Population Average Treatment Effect (PATE)

Requires precise knowledge about the sampling process that selected
units from the population into the sample.

Need to account for two sources of variation:

Variation from the sampling process

Variation from treatment assignment.

Thus, in general, Var(P̂ATE) > Var(ŜATE).
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Standard Error for Sample ATE

The standard error is the standard deviation of a sampling distribution:

SEθ̂ ≡
√

1
J

∑J
1(θ̂j − θ̂)2 (with J possible random assignments).

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

ATE estimates given all possible random assignments with two treated units:

Treated Units: 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4

ÂTE : 1.5 1.5 2 1 1.5 1.5

The average ÂTE is 1.5 and therefore the true standard error is
SE

ÂTE
=
√

1
6

[(1.5− 1.5)2 + (1.5− 1.5)2 + (2− 1.5)2 + (1− 1.5)2 + (1.5− 1.5)2 + (1.5− 1.5)2] ≈ .28
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Standard Error for Sample ATE

Standard Error for Sample ATE
Given complete randomization of N units with N1 assigned to treatment and N0 = N − N1 to
control, the true standard error of the estimated sample ATE is given by

SE
ÂTE

=

√(
N − N1

N − 1

)
Var [Y1i ]

N1
+

(
N − N0

N − 1

)
Var [Y0i ]

N0
+

(
1

N − 1

)
2Cov [Y1i ,Y0i ]

with population variances and covariance

Var [Ydi ] ≡
1

N

N∑
1

(
Ydi −

∑N
1 Ydi

N

)2

= σ2
Yd |Di=d

Cov [Y1i ,Y0i ] ≡
1

N

N∑
1

(
Y1i −

∑N
1 Y1i

N

)(
Y0i −

∑N
1 Y0i

N

)
= σ2

Y1,Y0
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1 Y1i

N
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1 Y0i

N
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= σ2

Y1,Y0

Plugging in, we obtain the true standard error of the estimated sample ATE

SE
ÂTE

=

√(
4− 2

4− 1

)
.25

2
+

(
4− 2

4− 1

)
.5

2
+

(
1

4− 1

)
2(−.25) ≈ .28
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Standard Error for Sample ATE

Standard Error for Sample ATE
Given complete randomization of N units with N1 assigned to treatment and N0 = N − N1 to
control, the true standard error of the estimated sample ATE is given by

SE
ÂTE

=

√(
N − N1

N − 1

)
Var [Y1i ]

N1
+

(
N − N0

N − 1

)
Var [Y0i ]

N0
+

(
1

N − 1

)
2Cov [Y1i ,Y0i ]

with population variances and covariance

Var [Ydi ] ≡
1

N

N∑
1

(
Ydi −

∑N
1 Ydi

N

)2

= σ2
Yd |Di=d

Cov [Y1i ,Y0i ] ≡
1

N

N∑
1

(
Y1i −

∑N
1 Y1i

N

)(
Y0i −

∑N
1 Y0i

N

)
= σ2

Y1,Y0

Standard error decreases if:

N grows

Var [Y1], Var [Y0] decrease

Cov [Y1,Y0] decreases
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Conservative Estimator ŜE
ÂTE

Conservative Estimator for Standard Error for Sample ATE

ŜE
ÂTE

=

√
̂Var [Y1i ]

N1
+

̂Var [Y0i ]

N0

with estimators of the sample variances given by

̂Var [Y1i ] ≡
1

N1 − 1

N∑
i|Di=1

(
Y1i −

∑N
i|Di=1 Y1i

N1

)2

= σ̂2
Y |Di=1

̂Var [Y0i ] ≡
1

N0 − 1

N∑
i|Di=0

(
Y0i −

∑N
i|Di=0 Y0i

N0

)2

= σ̂2
Y |Di=0
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Conservative Estimator ŜE
ÂTE

Conservative Estimator for Standard Error for Sample ATE

ŜE
ÂTE

=

√
̂Var [Y1i ]

N1
+

̂Var [Y0i ]

N0

with estimators of the sample variances given by

̂Var [Y1i ] ≡
1

N1 − 1

N∑
i|Di=1

(
Y1i −

∑N
i|Di=1 Y1i

N1

)2

= σ̂2
Y |Di=1

̂Var [Y0i ] ≡
1

N0 − 1

N∑
i|Di=0

(
Y0i −

∑N
i|Di=0 Y0i

N0

)2

= σ̂2
Y |Di=0

What about the covariance?
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Conservative Estimator ŜE
ÂTE

Conservative Estimator for Standard Error for Sample ATE

ŜE
ÂTE

=

√
̂Var [Y1i ]

N1
+

̂Var [Y0i ]

N0

with estimators of the sample variances given by

̂Var [Y1i ] ≡
1

N1 − 1

N∑
i|Di=1

(
Y1i −

∑N
i|Di=1 Y1i

N1

)2

= σ̂2
Y |Di=1

̂Var [Y0i ] ≡
1

N0 − 1

N∑
i|Di=0

(
Y0i −

∑N
i|Di=0 Y0i

N0

)2

= σ̂2
Y |Di=0

Conservative compared to the true standard error, i.e. SE
ÂTE

< ŜE
ÂTE

Asymptotically unbiased in two special cases:

if τi is constant (i.e. Cor [Y1,Y0] = 1)
if we estimate standard error of population average treatment effect
(Cov [Y1,Y0] is negligible when we sample from a large population)

Equivalent to standard error for two sample t-test with unequal variances or “robust”
standard error in regression of Y on D 43 / 181



Proof: SE
ÂTE
≤ ŜE

ÂTE

Upper bound for standard error is when Cor [Y1,Y0] = 1:

Cor [Y1,Y0] =
Cov [Y1,Y0]√
Var [Y1]Var [Y0]

≤ 1⇐⇒ Cov [Y1,Y0] ≤
√

Var [Y1]Var [Y0]

SE
ÂTE

=

√(
N − N1

N − 1

)
Var [Y1]

N1
+

(
N − N0

N − 1

)
Var [Y0]

N0
+

(
1

N − 1

)
2Cov [Y1,Y0]

=

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + 2Cov [Y1,Y0]

)

≤

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + 2

√
Var [Y1]Var [Y0]

)

≤

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + Var [Y1] + Var [Y0]

)

Last step follows from the following inequality

(
√

Var [Y1]−
√

Var [Y0])2 ≥ 0

Var [Y1]− 2
√

Var [Y1]Var [Y0] + Var [Y0] ≥ 0⇐⇒ Var [Y1] + Var [Y0] ≥ 2
√

Var [Y1]Var [Y0]
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Proof: SE
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≤ ŜE
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SE
ÂTE

≤

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + Var [Y1] + Var [Y0]

)

≤

√
N2

0Var [Y1] + N2
1Var [Y0] + N1N0(Var [Y1] + Var [Y0])

(N − 1)N1N0

≤

√
(N2

0 + N1N0)Var [Y1] + (N2
1 + N1N0)Var [Y0]

(N − 1)N1N0

≤

√
(N0 + N1)N0Var [Y1]

(N − 1)N1N0
+

(N1 + N0)N1Var [Y0]

(N − 1)N1N0

≤

√
N Var [Y1]

(N − 1)N1
+

N Var [Y0]

(N − 1)N0

≤

√
N

N − 1

(
Var [Y1]

N1
+

Var [Y0]

N0

)
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Proof: SE
ÂTE
≤ ŜE

ÂTE

SE
ÂTE

≤

√
N

N − 1

(
1

N1
Var [Y1] +

1

N0
Var [Y0]

)

Now, we need to estimate Var [Y1] and Var [Y0]. Recall that for simple random sampling without

replacement, the unbiased estimator of a population variance (σ2) is σ̂2
n( n

n−1
)(N−1

N
), which can

be rewritten as σ̂2
n−1(N−1

N
). In the set-up presented here, we have defined V̂ar [Yd ] to

correspond to σ̂2
n−1 (separately for d = 1, 0). Thus, inserting the unbiased estimators in for

Var [Y1] and Var [Y0], we get:√
N

N − 1

(
1

N1
V̂ar [Y1]

(
N − 1

N

)
+

1

N0
V̂ar [Y0]

(
N − 1

N

))

=

√√√√( V̂ar [Y1]

N1
+

V̂ar [Y0]

N0

)
Thus:

SE
ÂTE

≤

√
V̂ar [Y1]

N1
+

V̂ar [Y0]

N0
= ŜE

ÂTE

So the estimator for the standard error is conservative.
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Standard Error for Sample ATE

i Y1i Y0i Yi

1 3 0 3
2 1 1 1
3 2 0 0
4 2 1 1

ŜE
ÂTE

estimates given all possible assignments with two treated units:

Treated Units: 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4

ÂTE : 1.5 1.5 2 1 1.5 1.5

ŜE
ÂTE

: 1.11 .5 .71 .71 .5 .5

The average ŜE
ÂTE

is ≈ .67 compared to the true standard error of SE
ÂTE
≈ .28
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Example: Effect of Training on Earnings

Treatment Group:

N1 = 7, 487
Estimated Average Earnings Ȳ1: $16, 199
Estimated Sample Standard deviation σ̂Y |Di=1: $17, 038

Control Group :

N0 = 3, 717
Estimated Average Earnings Ȳ0: $15, 040
Estimated Sample deviation σ̂Y |Di=0: $16, 180

Estimated average effect of training:

τ̂ATE = Ȳ1 − Ȳ0 = 16, 199− 15, 040 = $1, 159

Estimated standard error for effect of training:

ŜE
ÂTE

=

√
σ̂2
Y |Di =1

N1
+

σ̂2
Y |Di =0

N0
=
√

17,0382

7,487 + 16,1802

3,717 ≈ $330

Is this consistent with a zero average treatment effect αATE = 0?
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Estimated Sample deviation σ̂Y |Di=0: $16, 180

Estimated average effect of training:
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Testing the Null Hypothesis of Zero Average Effect

Under the null hypothesis H0: τATE = 0, the average potential outcomes in
the population are the same for treatment and control: IE[Y1] = IE[Y0].

Since units are randomly assigned, both the treatment and control groups
should therefore have the same sample average earnings

However, we in fact observe a difference in mean earnings of $1, 159

What is the probability of observing a difference this large if the true average
effect of the training were zero (i.e. the null hypothesis were true)?
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Testing the Null Hypothesis of Zero Average Effect

Use a two-sample t-test with unequal variances:

t =
τ̂√

σ̂2
Yi |Di=1

N1
+
σ̂2
Yi |Di=0

N0

=
$1, 159√

$17, 0382

7, 487
+

$16, 1802

3, 717

≈ 3.5

From basic statistical theory, we know that tN
d→ N (0, 1)

And for a standard normal distribution, the probability of observing a
value of t that is larger than |t| > 1.96 is < .05

So obtaining a value as high as t = 3.5 is very unlikely under the null
hypothesis of a zero average effect

We reject the null hypothesis H0: τ0 = 0 against the alternative H1:
τ0 6= 0 at asymptotic 5% significance level whenever |t| > 1.96.

Inverting the test statistic we can construct a 95% confidence interval

τ̂ATE ± 1.96 · ŜE
ÂTE
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Testing the Null Hypothesis of Zero Average Effect

R Code
> d <- read.dta("jtpa.dta")

> head(d[,c("earnings","assignmt")])

earnings assignmt

1 1353 1

2 4984 1

3 27707 1

4 31860 1

5 26615 0

>

> meanAsd <- function(x){
+ out <- c(mean(x),sd(x))

+ names(out) <- c("mean","sd")

+ return(out)

+ }
>

> aggregate(earnings~assignmt,data=d,meanAsd)

assignmt earnings.mean earnings.sd

1 0 15040.50 16180.25

2 1 16199.94 17038.85
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Testing the Null Hypothesis of Zero Average Effect

R Code
> t.test(earnings~assignmt,data=d,var.equal=FALSE)

Welch Two Sample t-test

data: earnings by assignmt

t = -3.5084, df = 7765.599, p-value = 0.0004533

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1807.2427 -511.6239

sample estimates:

mean in group 0 mean in group 1

15040.50 16199.94
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Regression to Estimate the Average Treatment Effect

Estimator (Regression)

The ATE can be expressed as a regression equation:

Yi = Di Y1i + (1− Di )Y0i

= Y0i + (Y1i − Y0i )Di

= Ȳ0︸︷︷︸
α

+ (Ȳ1 − Ȳ0)︸ ︷︷ ︸
τReg

Di + {(Yi0 − Ȳ0) + Di · [(Yi1 − Ȳ1)− (Yi0 − Ȳ0)]}︸ ︷︷ ︸
ε

= α + τRegDi + εi

τReg could be biased for τATE in two ways:

Baseline difference in potential outcomes under control that is
correlated with Di .
Individual treatment effects τi are correlated with Di

Under random assignment, both correlations are zero in expectation

Effect heterogeneity implies “heteroskedasticity”, i.e. error variance differs
by values of Di .

Neyman model implies “robust” standard errors.

Can use regression in experiments without assuming constant effects.
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= Ȳ0︸︷︷︸
α
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Regression to Estimate the Average Treatment Effect

R Code
> library(sandwich)

> library(lmtest)

>

> lout <- lm(earnings~assignmt,data=d)

> coeftest(lout,vcov = vcovHC(lout, type = "HC1")) # matches Stata

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15040.50 265.38 56.6752 < 2.2e-16 ***

assignmt 1159.43 330.46 3.5085 0.0004524 ***

---
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Covariates and Experiments

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0
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Y1 Y0 Y1 Y0 Y1 Y0Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0

X

X

X

X

X
X
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Covariates

Randomization is gold standard for causal inference because in
expectation it balances observed but also unobserved characteristics
between treatment and control group.

Unlike potential outcomes, you observe baseline covariates for all
units. Covariate values are predetermined with respect to the
treatment and do not depend on Di .

Under randomization, fX |D(X |D = 1)
d
= fX |D(X |D = 0) (equality in

distribution).

Similarity in distributions of covariates is known as covariate balance.

If this is not the case, then one of two possibilities:

Randomization was compromised.

Sampling error (bad luck)

One should always test for covariate balance on important covariates,
using so called “balance checks” (eg. t-tests, F-tests, etc.)
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Covariates and Experiments
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Covariates and Experiments
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Regression with Covariates

Practioners often run some variant of the following model with
experimental data:

Yi = α + τDi + Xiβ + εi

Why include Xi when experiments “control” for covariates by design?

Correct for chance covariate imbalances that indicate that τ̂ may be far
from τATE .

Increase precision: remove variation in the outcome accounted for by
pre-treatment characteristics, thus making it easier to attribute
remaining differences to the treatment.

ATE estimates are robust to model specification (with sufficient N).

Never control for post-treatment covariates!
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Covariate Adjustment with Regression

Freedman (2008) shows that regression of the form:

Yi = α + τregDi + β1Xi + εi

τ̂reg is consistent for ATE and has small sample bias (unless model is true)
bias is on the order of 1/n and diminishes rapidly as N increases

τ̂reg will not necessarily improve precision if model is incorrect
But harmful to precision only if more than 3/4 of units are assigned to
one treatment condition or Cov(Di ,Y1 − Y0) larger than Cov(Di ,Y ).

Lin (2013) shows that regression of the form:

Yi = α + τinteractDi + β1 · (Xi − X̄ ) + β2 · Di · (Xi − X̄ ) + εi

τ̂interact is consistent for ATE and has the same small sample bias

Cannot hurt asymptotic precision even if model is incorrect and will likely
increase precision if covariates are predictive of the outcomes.

Results hold for multiple covariates
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True ATE

−2 −1 0 1 2

0
5

10
15

20

x

Y

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●●

●

ATE

●

Y_1
Y_0
E[Y_1]
E[Y_0]

71 / 181



True ATE and Unadjusted Regression Estimator
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Adjusted Regression Estimator
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E[X]<E[X|D=1], so we expect E[Y_1]<E[Y|D=1]

E[Y|D=1]_reg = E[Y|D=1] + Q(E[X] − E[X|D=1])
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Adjusted Regression Estimator
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Covariate Adjustment with Regression
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Why are Experimental Findings Robust to Alternative
Specifications?

Note the following important property of OLS known as the
Frisch-Waugh-Lovell (FWL) theorem or Anatomy of Regression:

βk =
Cov(Yi , x̃ki )

Var(x̃ki )

where x̃ki is the residual from a regression of xki on all other covariates.

Any multivariate regression coefficient can be expressed as the coefficient
on a bivariate regression between the outcome and the regressor, after
“partialling out” other variables in the model.

Let D̃i be the residuals after regressing Di on Xi . For experimental data,
on average, what will D̃i be equal to?

Since D̃i ≈ Di , multivariate regressions will yield similar results to bivariate
regressions.
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Summary: Covariate Adjustment with Regression

One does not need to believe in the classical linear model (linearity and
constant treatment effects) to tolerate or even advocate OLS covariate
adjustment in randomized experiments (agnostic view of regression).

Covariate adjustment can buy you power (and thus allows for a smaller
sample).

Small sample bias might be a concern in small samples, but usually
swamped by efficiency gains.

Since covariates are controlled for by design, results are typically not model
dependent.

Best if covariate adjustment strategy is pre-specified as this rules out fishing.

Always show the unadjusted estimate for transparency.
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Testing in Small Samples: Fisher’s Exact Test

Test of differences in means with large N:

H0 : IE[Y1] = IE[Y0], H1 : IE[Y1] 6= IE[Y0] (weak null)

Fisher’s Exact Test with small N:

H0 : Y1 = Y0, H1 : Y1 6= Y0 (sharp null of no effect)

Let Ω be the set of all possible randomization realizations.

We only observe the outcomes, Yi , for one realization of the
experiment. We calculate τ̂ = Ȳ1 − Ȳ0.

Under the sharp null hypothesis, we can compute the value that the
difference in means estimator would have taken under any other
realization, τ̂(ω), for ω ∈ Ω.
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We only observe the outcomes, Yi , for one realization of the
experiment. We calculate τ̂ = Ȳ1 − Ȳ0.

Under the sharp null hypothesis, we can compute the value that the
difference in means estimator would have taken under any other
realization, τ̂(ω), for ω ∈ Ω.
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di

1 3 ? 1
2 1 ? 1
3 ? 0 0
4 ? 1 0

τ̂ATE 1.5

What do we know given the sharp null H0 : Y1 = Y0?
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di

1 3 3 1
2 1 1 1
3 0 0 0
4 1 1 0

τ̂ATE 1.5
τ̂(ω) 1.5

Given the full schedule of potential outcomes under the sharp null, we can
compute the null distribution of ATEH0 across all possible randomization.
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di

1 3 3 1 1
2 1 1 1 0
3 0 0 0 1
4 1 1 0 0

τ̂ATE 1.5
τ̂(ω) 1.5 0.5
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di

1 3 3 1 1 1
2 1 1 1 0 0
3 0 0 0 1 0
4 1 1 0 0 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di

1 3 3 1 1 1 0
2 1 1 1 0 0 1
3 0 0 0 1 0 1
4 1 1 0 0 1 0

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di Di

1 3 3 1 1 1 0 0
2 1 1 1 0 0 1 1
3 0 0 0 1 0 1 0
4 1 1 0 0 1 0 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5 -.5
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di Di Di

1 3 3 1 1 1 0 0 0
2 1 1 1 0 0 1 1 0
3 0 0 0 1 0 1 0 1
4 1 1 0 0 1 0 1 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5 -.5 -1.5

So Pr(τ̂(ω) ≥ τ̂ATE ) = 2/6 ≈ .33.

Which assumptions are needed?
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di Di Di

1 3 3 1 1 1 0 0 0
2 1 1 1 0 0 1 1 0
3 0 0 0 1 0 1 0 1
4 1 1 0 0 1 0 1 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5 -.5 -1.5

So Pr(α̂(ω) ≥ τ̂ATE ) = 2/6 ≈ .33.

Which assumptions are needed? None! Randomization as “reasoned basis
for causal inference” (Fisher 1935)
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Outline
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2 Estimation Under Random Assignment

Average Treatment Effect

Standard Error for ATE

Hypothesis Testing
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Hypothesis Testing in Small Samples
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Blocking

Power Calculations

Threats to Validity and Ethics
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Experiments in Popular Culture
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The Rise of Experiments

Large increase in the use of experiments in the social sciences: laboratory, survey,
and field experiments (see syllabus)

Abbreviated list of examples:

Program Evaluation: development programs, education programs, weight
loss programs, fundraising, deliberative polls, virginity pledging, advertising
campaigns, mental exercise for elderly

Public policy evaluations: teacher pay, class size, speed traps, vouchers,
alternative sentencing, job training, health insurance subsidies, tax
compliance, public housing, jury selection, police interventions

Behavioral Research: persuasion, mobilization, education, income,
interpersonal influence, conscientious health behaviors, media exposure,
deliberation, discrimination

Research on Institutions: rules for authorizing decisions, rules of succession,
monitoring performance, transparency, corruption auditing, electoral systems
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Experiments from Political Science and Economics

Voter mobilization (Nickerson, Gerber and Green)

Voting mechanisms (Olken)

Health insurance reform (Finkelstein et al.)

Race-based discrimination in labor markets (Bertrand and
Mullainathan)

Clientelistic vs programmatic presidential campaigns (Wantchekon)

Female incumbents (Duflo)

Information interventions for Elites (Butler)

Monitoring interventions (Ichino)

Audience costs (Tomz)

Many more . . .
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Social Pressure Experiment

Voter turnout theories based on rational self-interested behavior generally
fail to predict significant turnout unless they account for the utility that
citizens receive from performing their civic duty.

Two aspects of this type of utility: intrinsic satisfaction from behaving in
accordance with a norm and extrinsic incentives to comply.

Gerber, Green, and Larimer (2008) test these motives in a large scale field
experiment by applying varying degrees of intrinsic and extrinsic pressure on
voters using a series of mailings to 180,002 households before the August
2006 primary election in Michigan.
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Social Pressure Experiment

Civic Duty
Encouraged to vote.

Hawthorne
Encouraged to vote.

Told that researchers would be checking on whether they voted: “YOU
ARE BEING STUDIED!”

Self
Encouraged to vote.

Told that whether one votes is a matter of public record.

Shown whether members of their own household voted in the last two
elections and promised to send post-card after election indicating
whether or not they voted.

Neighbors
Like Self treatment but in addition recipients are shown whether the
neighbors on the block voted in the last two elections.

Promised to inform neighbors whether or not subject voted after
election.
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Example: Social Pressure Experiment

Social Pressure and Voter Turnout February 2008

46
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Example: Social Pressure Experiment
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Example: Social Pressure Experiment

d <- read.dta("gerber.dta")

covars <- c("hh_size","g2002","g2000","p2004","p2002","p2000","sex","yob")

print(aggregate(d[,covars],by=list(d$treatment),mean),digits=3)

Group.1 hh_size g2002 g2000 p2004 p2002 p2000 sex yob

1 Control 1.91 0.834 0.866 0.417 0.409 0.265 0.502 1955

2 Hawthorne 1.91 0.836 0.867 0.419 0.412 0.263 0.503 1955

3 Civic Duty 1.91 0.836 0.865 0.416 0.410 0.266 0.503 1955

4 Neighbors 1.91 0.835 0.865 0.423 0.406 0.263 0.505 1955

5 Self 1.91 0.835 0.863 0.421 0.410 0.263 0.501 1955
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Example: Social Pressure Experiment

print(aggregate(d[,covars],by=list(d$treatment),sd),digits=3)

Group.1 hh_size g2002 g2000 p2004 p2002 p2000 sex yob

1 Control 0.720 0.294 0.271 0.444 0.435 0.395 0.273 12.9

2 Hawthorne 0.718 0.295 0.270 0.444 0.435 0.393 0.272 12.9

3 Civic Duty 0.729 0.293 0.270 0.444 0.435 0.396 0.275 12.9

4 Neighbors 0.728 0.295 0.273 0.445 0.434 0.393 0.274 13.0

5 Self 0.718 0.294 0.274 0.444 0.434 0.392 0.274 12.8
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Example: Social Pressure Experiment

print(aggregate(d[,c("yob")],by=list(d$treatment),quantile),digits=3)

Group.1 x.0% x.25% x.50% x.75% x.100%

1 Control 1900 1946 1957 1964 1986

2 Hawthorne 1908 1946 1957 1964 1984

3 Civic Duty 1906 1947 1957 1964 1986

4 Neighbors 1905 1946 1957 1964 1986

5 Self 1908 1946 1957 1964 1986
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Example: Social Pressure Experiment
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Example: Social Pressure Experiment

form <- as.formula(paste("treatment","~",paste(covars,collapse="+")))

form

treatment ~ hh_size + g2002 + g2000 + p2004 + p2002 + p2000 +

sex + yob

summary(lm(form,data=d))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7944614 0.5496699 3.265 0.0011 **

hh_size -0.0032727 0.0051836 -0.631 0.5278

g2002 0.0121818 0.0123389 0.987 0.3235

g2000 -0.0233410 0.0133489 -1.749 0.0804 .

p2004 0.0118147 0.0079130 1.493 0.1354

p2002 0.0018055 0.0081488 0.222 0.8247

p2000 -0.0031604 0.0087721 -0.360 0.7186

sex 0.0031331 0.0125052 0.251 0.8022

yob 0.0001671 0.0002815 0.594 0.5528

Residual standard error: 1.449 on 179993 degrees of freedom

Multiple R-squared: 4.004e-05, Adjusted R-squared: -4.406e-06

F-statistic: 0.9009 on 8 and 179993 DF, p-value: 0.5145
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Example: Social Pressure Experiment

American Political Science Review Vol. 102, No. 1

TABLE 3. OLS Regression Estimates of the Effects of Four Mail Treatments on Voter
Turnout in the August 2006 Primary Election

Model Specifications

(a) (b) (c)
Civic Duty Treatment (Robust cluster standard errors) .018∗ (.003) .018∗ (.003) .018∗ (.003)
Hawthorne Treatment (Robust cluster standard errors) .026∗ (.003) .026∗ (.003) .025∗ (.003)
Self-Treatment (Robust cluster standard errors) .049∗ (.003) .049∗ (.003) .048∗ (.003)
Neighbors Treatment (Robust cluster standard errors) .081∗ (.003) .082∗ (.003) .081∗ (.003)
N of individuals 344,084 344,084 344,084
Covariates∗∗ No No Yes
Block-level fixed effects No Yes Yes
Note: Blocks refer to clusters of neighboring voters within which random assignment occurred. Robust cluster standard
errors account for the clustering of individuals within household, which was the unit of random assignment.
∗ p < .001.
∗∗ Covariates are dummy variables for voting in general elections in November 2002 and 2000, primary elections in
August 2004, 2002, and 2000.

randomized at the household-level is that proper esti-
mation of the standard errors requires a correction for
the possibility that individuals within each household
share unobserved characteristics (Arceneaux 2005).
For this reason, Table 3 reports robust cluster stan-
dard errors, which take intrahousehold correlation into
account. We also consider a range of different model
specifications in order to gauge the robustness of the
results.

The first column of Table 3 reports the results of a
linear regression in which voter turnout (Yi) for indi-
vidual i is regressed on dummy variables {D1i, D2i, D3i,
D4i} marking each of the four treatments (the refer-
ence category is the control group). This model may be
written simply as

Yi = β0 + β1D1i + β2D2i + β3D3i + β4D4i + ui, (6)

where ui represents an unobserved disturbance term.
The second column embellishes this model by including
fixed effects {C1i, C2i, . . . , C9999i} for all but one of the
K = 10,000 geographic clusters within which random-
ization occurred:

Yi = β0 + β1D1i + β2D2i + β3D3i + β4D4i

+
K−1∑

k=1

γkCki + ui. (7)

The parameters associated with these fixed effects are
uninteresting for our purposes; we will focus on the
treatment parameters β1, β2, β3, and β4. The advantage
of including fixed effects is the potential to eliminate
any observed imbalances within each geographic clus-
ter, thereby improving the precision of the estimates.
The final column of Table 3 controls further for voting
in five recent elections:

Yi = β0 + β1D1i + β2D2i + β3D3i + β4D4i +
K−1∑

k=1

γkCki

+ λ1V1i + λ1V1i + · · · + λ5V5i + ui. (8)

Again, the point is to minimize disturbance variance
and improve the precision of the treatment estimates.

The results are remarkably robust, with scarcely
any movement even in the third decimal place.
The average effect of the Civic Duty mailing is a
1.8 percentage-point increase in turnout, suggesting
that priming civic duty has a measurable but not large
effect on turnout. The Hawthorne mailing’s effect is
2.5 percentage points. Mailings that list the household’s
own voting record increase turnout by 4.8 percentage
points, and including the voting behavior of neighbors
raises the effect to 8.1 percentage points. All effects
are significant at p < .0001. Moreover, the Hawthorne
mailing is significantly more effective than the Civic
Duty mailing ( p < .05, one-tailed); the Self mailing
is significantly more effective than the Hawthorne
mailing ( p < .001); and the Neighbors mailing is
significantly more effective than the Self mailing
( p < .001).

Having established that turnout increases marginally
when civic duty is primed and dramatically when social
pressure is applied, the remaining question is whether
the effects of social pressure interact with feelings of
civic duty. Using an individual’s voting propensity as
a proxy for the extent to which he or she feels an
obligation to vote, we divided the observations into
six subsamples based on the number of votes cast in
five prior elections; we further divided the subsamples
according to the number of voters in each household,
because household size and past voting are correlated.
As noted earlier, one hypothesis is that social pressure
is particularly effective because it reinforces existing
motivation to participate. The contrary hypothesis is
that extrinsic incentives extinguish intrinsic motivation,
resulting in greater treatment effects among those with
low voting propensities. To test these hypotheses while
at the same time taking into account floor and ceil-
ing effects, we conducted a series of logistic regres-
sions and examined the treatment effects across sub-
groups.10 This analysis revealed that the treatment ef-
fects on underlying voting propensities are more or

10 This analysis (not shown, but available on request) divided the
subjects according to past voting history and household size. We
tested the interaction hypothesis by means of a likelihood-ratio test,
which failed to reject the null hypothesis of equal treatment effects
across these subgroups.

39
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Example: Job Training Partnership Act (JTPA)

Largest randomized training evaluation ever undertaken in the U.S.;
started in 1983 at 649 sites throughout the country

Sample: Disadvantaged persons in the labor market (previously
unemployed or low earnings)

D: Assignment to one of three general service strategies

classroom training in occupational skills
on-the-job training and/or job search assistance
other services (eg. probationary employment)

Y: Earnings 30 months following assignment

X: Characteristics measured before assignment (age, gender, previous
earnings, race, etc.)
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Random Assignment Model for JTPA Experiment
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Means and Standard Deviations for JTPA Experiment
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Subgroup Effects for JTPA Experiment
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A Word about Policy Implications

After the results of the National JTPA study were released, in 1994,
funding for JTPA training for the youth were drastically cut:

Spending on JTPA Programs

Year Youth Training Adult Training
Grants Grants

1993 677 1015
1994 609 988
1995 127 996
1996 127 850
1997 127 895
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Outline
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3 Examples
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Considerations for Experimental Designs

Unit of analysis and unit of randomization (individuals, groups,
institutions, etc)?

Choice of analytic level determines what the study has the capacity to
demonstrate.

Example: randomize school vouchers at the level of the individual or at
the level of the community? Do we want to know how students
respond to new environment or or how schools respond to competition?

Can also help with SUTVA (e.g. interactions within and between
schools)

How many treatments?

How many units?

How many treated and how many controls?

Is background information available? If so, how can it be used?
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Blocking

Imagine you have data on the units that you are about to randomly
assign. Why leave it to “pure” chance to balance the observed
characteristics?

Idea in blocking is to pre-stratify the sample and then to randomize
separately within each stratum to ensure that the groups start out
with identical observable characteristics on the blocked factors.

You effectively run a separate experiment within each stratum,
randomization will balance the unobserved attributes

Why is this helpful?

Four subjects with pre-treatment outcomes of {2,2,8,8}
Divided evenly into treatment and control groups and treatment effect
is zero

Simple random assignment will place {2,2} and {8,8} together in the
same treatment or control group 1/3 of the time
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Blocking

Imagine you run an experiment where you block on gender. It’s possible to
think about an ATE composed of two seperate block-specific ATEs:

τ =
Nf

Nf + Nm
· τf +

Nm

Nf + Nm
· τm

An unbiased estimator for this quantity will be

τ̂B =
Nf

Nf + Nm
· τ̂f +

Nm

Nf + Nm
· τ̂m

or more generally, if there are J strata or blocks, then

τ̂B =
J∑

j=1

Nj

N
τ̂j
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Blocking

Because the randomizations in each block are independent, the variance of
the blocking estimator is simply (Var(aX + bY ) = a2Var(X ) + b2Var(Y )):

Var(τ̂B) =

(
Nf

Nf + Nm

)2

Var(τ̂f ) +

(
Nm

Nf + Nm

)2

Var(τ̂m)

or more generally

Var(τ̂B) =
J∑

j=1

(
Nj

N

)2

Var(τ̂j)
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Blocking with Regression

When analyzing a blocked randomized experiment with OLS and the probability
of receiving treatment is equal across blocks, then OLS with block “fixed effects”
will result in a valid estimator of the ATE:

yi = τDi +
J∑

j=2

βj · Bij + εi

where Bj is a dummy for the j-th block (one omitted as reference category).

If probabilites of treatment, pij = P(Dij = 1), vary by block, then weight each
observation:

wij =

(
1

pij

)
Di +

(
1

1− pij

)
(1− Di )

Why do this? When treatment probabilities vary by block, then OLS will weight
blocks by the variance of the treatment variable in each block. Without
correcting for this, OLS will result in biased estimates of ATE!
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correcting for this, OLS will result in biased estimates of ATE!
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When Does Blocking Help?

Imagine a model for a complete and blocked randomized design:

Yi = α + τCRDi + εi

(1)

Yi = α + τBRDi +
J∑

j=2

βjBij + ε∗i (2)

where Bj is a dummy for the j-th block. Then given iid sampling:

Var [τ̂CR ] =
σ2
ε∑n

i=1(Di − D̄)2
with σ̂2

ε =

∑n
i=1 ε̂

2
i

n − 2
=

SSRε̂
n − 2

Var [τ̂BR ] =
σ2
ε∗∑n

i=1(Di − D̄)2(1− R2
j )

with σ̂ε∗
2 =

∑n
i=1 ε̂

∗2

i

n − k − 1
=

SSRε̂∗

n − k − 1

where R2
j is R2 from regression of D on all Bj variables and a constant.
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When Does Blocking Help?

Yi = α + τCRDi + εi (3)

Yi = α + τBRDi +
J∑

j=2

βjBij + ε∗i (4)

where Bk is a dummy for the k-th block. Then given iid sampling:

V [τ̂CR ] =
σ2
ε∑n

i=1(Di − D̄)2
with σ̂2

ε =

∑n
i=1 ε̂

2
i

n − 2
=

SSRε̂
n − 2

V [τ̂BR ] =
σ2
ε∗∑n

i=1(Di − D̄)2(1− R2
j )

with σ̂ε∗
2 =

∑n
i=1 ε̂

∗2

i

n − k − 1
=

SSRε̂∗

n − k − 1

where R2
j is R2 from regression of D on the Bk dummies and a constant.

So when is Var [τ̂BR ] < Var [τ̂CR ]?
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When Does Blocking Help?

Yi = α + τCRDi + εi (5)

Yi = α + τBRDi +
J∑

j=2

βjBij + ε∗i (6)

where Bk is a dummy for the k-th block. Then given iid sampling:

V [τ̂CR ] =
σ2
ε∑n

i=1(Di − D̄)2
with σ̂2

ε =

∑n
i=1 ε̂

2
i

n − 2
=

SSRε̂
n − 2

V [τ̂BR ] =
σ2
ε∗∑n

i=1(Di − D̄)2(1− R2
j )

with σ̂ε∗
2 =

∑n
i=1 ε̂

∗2

i

n − k − 1
=

SSRε̂∗

n − k − 1

where R2
j is R2 from regression of D on the Bk dummies and a constant.

Since R2
j ≈ 0 V [τ̂BR ] < V [τ̂CR ] if

SSR
ε̂∗

n−k−1 <
SSRε̂

n−2

138 / 181



Example: Fair Trade Labeling Experiment

Label Experiment

Treatment Control
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Example: Fair Trade Labeling Experiment
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Example: Fair Trade Labeling Experiment

Matched Pairs: Phase 1
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Example: Fair Trade Labeling Experiment

R Code
> d <- read.dta("FTdata.dta")

> head(d)

store pair FTweek lnsalesd

1 1 1 1 3.20

2 4 1 0 2.77

3 6 2 1 4.18

4 9 2 0 4.04

5 21 3 1 4.30

6 24 3 0 3.93
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Example: Fair Trade Labeling Experiment

R Code
> cr.out <- lm(lnsalesd~FTweek,data=d)

> coeftest(cr.out,vcov = vcovHC(cr.out, type = "HC1"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.35000 0.16079 27.0537 <2e-16 ***

FTweek 0.12385 0.21424 0.5781 0.5686

---
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Example: Fair Trade Labeling Experiment
R Code

> br.out <- lm(lnsalesd~FTweek+as.factor(pair),data=d)

> coeftest(br.out,vcov = vcovHC(br.out, type = "HC1"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.923077 0.162144 18.0277 4.671e-10 ***

FTweek 0.123846 0.060176 2.0581 0.0619840 .

as.factor(pair)2 1.125000 0.159549 7.0511 1.335e-05 ***

as.factor(pair)3 1.130000 0.204440 5.5273 0.0001304 ***

as.factor(pair)4 1.145000 0.231925 4.9369 0.0003439 ***

as.factor(pair)5 1.280000 0.161773 7.9123 4.208e-06 ***

as.factor(pair)6 1.410000 0.169987 8.2948 2.591e-06 ***

as.factor(pair)7 1.575000 0.203689 7.7324 5.317e-06 ***

as.factor(pair)8 1.585000 0.277319 5.7154 9.675e-05 ***

as.factor(pair)9 1.610000 0.169987 9.4713 6.420e-07 ***

as.factor(pair)10 1.795000 0.165195 10.8660 1.450e-07 ***

as.factor(pair)11 1.810000 0.169987 10.6479 1.810e-07 ***

as.factor(pair)12 2.015000 0.164183 12.2729 3.763e-08 ***

as.factor(pair)13 2.070000 0.160298 12.9134 2.127e-08 ***

---
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Example: Fair Trade Labeling Experiment
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Example: Fair Trade Labeling Experiment
R Code

> summary(lm(lnsalesd~as.factor(pair),data=d))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9850 0.1212 24.621 2.72e-12 ***

as.factor(pair)2 1.1250 0.1715 6.562 1.82e-05 ***

as.factor(pair)3 1.1300 0.1715 6.591 1.74e-05 ***

as.factor(pair)4 1.1450 0.1715 6.678 1.52e-05 ***

as.factor(pair)5 1.2800 0.1715 7.466 4.73e-06 ***

as.factor(pair)6 1.4100 0.1715 8.224 1.65e-06 ***

as.factor(pair)7 1.5750 0.1715 9.186 4.77e-07 ***

as.factor(pair)8 1.5850 0.1715 9.245 4.44e-07 ***

as.factor(pair)9 1.6100 0.1715 9.390 3.71e-07 ***

as.factor(pair)10 1.7950 0.1715 10.469 1.05e-07 ***

as.factor(pair)11 1.8100 0.1715 10.557 9.56e-08 ***

as.factor(pair)12 2.0150 0.1715 11.752 2.68e-08 ***

as.factor(pair)13 2.0700 0.1715 12.073 1.94e-08 ***

---

Residual standard error: 0.1715 on 13 degrees of freedom

Multiple R-squared: 0.9474, Adjusted R-squared: 0.8988

F-statistic: 19.5 on 12 and 13 DF, p-value: 2.356e-06

146 / 181



Blocking

How does blocking help?

Increases efficiency if the blocking variables predict outcomes (i.e. they
“remove” the variation that is driven by nuisance factors)

Blocking on irrelevant predictors can burn up degrees of freedom

Can help with small sample bias due to “bad” randomization

Is powerful especially in small to medium sized samples

What to block on?

“Block what you can, randomize what you can’t”

The baseline of the outcome variable and other main predictors

Variables desired for subgroup analysis

How to block?

Stratification

Pair-matching

Check: blockTools library
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Analysis with Blocking

“As ye randomize, so shall ye analyze” (Senn 2004): Need to
account for the method of randomization when performing statistical
analysis.

If using OLS, strata dummies should be included when analyzing
results of stratified randomization.

If probability of treatment assignment varies across blocks, then weight
treated units by probability of being in treatment and controls by the
probability of being a control.

Failure to control for the method of randomization can result in
incorrect test size.

149 / 181



Outline
1 Identification Under Random Assignment

2 Estimation Under Random Assignment

Average Treatment Effect

Standard Error for ATE

Hypothesis Testing

Covariates

Hypothesis Testing in Small Samples

3 Examples

4 Further Issues in Experimental Design

Blocking

Power Calculations

Threats to Validity and Ethics
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Relative Sample Sized for Fixed N

If sample sizes are large enough, we can approximate

Ȳ1 − Ȳ0 ∼ N

(
µ1 − µ0,

σ2
1

N1
+
σ2

0

N0

)
.

Problem

Choose N1 and N0, such that N1 + N0 = N, to minimize the variance of
the estimator of the average treatment effect.

Recall that the variance of Ȳ1 − Ȳ0 is approximately:

var(Ȳ1 − Ȳ0) =
σ2

1

pN
+

σ2
0

(1− p)N

where p = N1/N is the proportion of treated in the sample.
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Relative Sample Sized for Fixed N

Find the value p∗ that makes the derivative with respect to p equal to zero:

− σ2
1

p∗2N
+

σ2
0

(1− p∗)2N
= 0.

Therefore:
1− p∗

p∗
=
σ0

σ1
,

and

p∗ =
σ1

σ1 + σ0
=

1

1 + σ0/σ1

A “rule of thumb” for the case σ1 ≈ σ0 is p∗ = 0.5

For practical reasons it is sometimes better to choose unequal sample sizes
(even if σ1 ≈ σ0). Note: precision erodes slowly until the degree of
imbalance becomes extreme (p < .2 or p > .8), so there is latitude for
using an unbalanced allocation.
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Variance of ATE as Function of p

Imagine: σ2
1 = σ2

0 = 1, N = 100
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Experimental Design: Power calculations to choose N

Recall that for a statistical test:

Type I error: Rejecting the null if the null is true (α)

Type II error: Not rejecting the null if the null is false (Ψ)

Size of a test is the probability of type I error. Usually 0.05

Power of a test is one minus the probability of type II error, i.e. the
probability of rejecting the null if the null is false

What does power depend on?

True size of the effect (δ)
Sample size and proportion of treated (N and p)
Variability of outcomes (σ)
Desired α level
Test statistic
Number of treatments
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Power calculations with equal and known variances
Suppose that Y0 ∼ (µ0, σ

2
0 = σ2) and Y1 ∼ (µ1, σ

2
1 = σ2). Assume also that p = 0.5, so N0 = N1 = N/2. Let

δ = µ1 − µ0. Then, for the t-statistic of equality of means:

Ȳ1 − Ȳ0 − δ√
σ2

1

N1

+
σ2

0

N0

∼ N (0, 1) .

Therefore:

Ȳ1 − Ȳ0 − δ√
σ2

1

N1

+
σ2

0

N0

=
Ȳ1 − Ȳ0√
σ2

1

N1

+
σ2

0

N0

−
δ√

σ2
1

N1

+
σ2

0

N0

=
Ȳ1 − Ȳ0√
σ2

1

N1

+
σ2

0

N0

−
δ√

2σ2

N
+

2σ2

N

=
Ȳ1 − Ȳ0√
σ2

1

N1

+
σ2

0

N0

−
δ

2σ/
√
N

=
Ȳ1 − Ȳ0√
σ2

1

N1

+
σ2

0

N0

−
δ
√
N

2σ

Therefore:

t =
Ȳ1 − Ȳ0√
σ2

1

N1

+
σ2

0

N0

∼ N

(
δ
√

N

2σ
, 1

)
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Power calculations with equal and known variances

The power, i.e. Pr (reject µ1 − µ0 = 0|µ1 − µ0 = δ) is:

Pr (|t| > 1.96) = Pr (t < −1.96) + Pr (t > 1.96)

= Pr

(
t − δ

√
N

2σ
< −1.96− δ

√
N

2σ

)

+ Pr

(
t − δ

√
N

2σ
> 1.96− δ

√
N

2σ

)

= Φ

(
−1.96− δ

√
N

2σ

)
+

(
1− Φ

(
1.96− δ

√
N

2σ

))
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Power functions for N = 25, N = 50, and σ2 = 1

The probability of rejecting the null µ1 − µ0 = 0 is:

Pr (|t| > 1.96) = Pr (t < −1.96) + Pr (t > 1.96)

= Pr

(
t− δ

√
N

2σ
< −1.96− δ

√
N

2σ

)

+ Pr

(
t− δ

√
N

2σ
> 1.96− δ

√
N

2σ

)

= Φ

(
−1.96− δ

√
N

2σ

)
+

(
1− Φ

(
1.96− δ

√
N

2σ

))
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Power functions for N = 25, N = 50, and σ2 = 1Note: increasing sample size has a diminishing return for precision.
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General formula for the power function (p 6= 0.5, σ2
0 6= σ2

1)

Pr (reject µ1 − µ0 = 0|µ1 − µ0 = δ)

= Φ

(
−1.96− δ

/√
σ2

1

pN
+

σ2
0

(1− p)N

)

+

(
1− Φ

(
1.96− δ

/√
σ2

1

pN
+

σ2
0

(1− p)N

))
.

To choose N we need to specify:

1 δ: minimum detectable effect magnitude

2 Power value (usually 0.80 or higher)

3 σ2
1 and σ2

0 (usually σ2
1 = σ2

0) (e.g. using previous measures)

4 p: proportion of observations in the treatment group (if σ1 = σ0, then the
power is maximized by p = 0.5)
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Formula for Minimum Detectable Effect

Assume σ2 = σ2
1 = σ2

0 , we can solve for the minimum detectable effect:

MDE (δ) = Mn−2

√
σ2

Np(1− p)

where Mn−2 = t(1−α/2) + t1−Ψ is called the multiplier

t(1−α/2): critical t-value to reject the null (two-tailed)

t1−Ψ: t-value for t-distribution of the alternative. Depends on desired power
(1−Ψ) where Ψ is Pr(type II error)

E.g. for a two-tailed test with .80 power and df > 20 we have approximatly
Mn−2 = t0.975 + t.2 = 1.96 + .84 = 2.8

We can also consider the standardized mean difference effect size ES which is
ES = δ

σ and the minimum detectable effect is thus

MDES(δ) = Mn−2

√
1

Np(1− p)
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Minimum Detectable Effect

Example: Standard deviation is $500 dollars, and average earnings are $2,500
dollars. Here is what we can expect to detect for a given sample size and power.

MDE MDES N SD Sig Po mean Y MDE/Mean
88.68 0.18 1000 500 0.05 0.8 2500 3.55

125.54 0.25 500 500 0.05 0.8 2500 5.02
282.98 0.57 100 500 0.05 0.8 2500 11.32
404.44 0.81 50 500 0.05 0.8 2500 16.18
585.24 1.17 25 500 0.05 0.8 2500 23.41

What is the target minimum ES?

Depends on what the benchmark is
(theoretical expectations, intervention costs, etc.)

Popular benchmark for gauging standardized ES is Cohen’s (1977)
prescription (based on little empirical evidence) that values of 0.20, 0.50,
and 0.80 be considered small, moderate, and large.
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Multiplier Mn−2 = t1−α/2 + t1−Ψ
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effect size (delta)

Pr(Type 2)

Power: 1−Pr(Type 2)

t−Distribution: H0: Effect=0
t−Distriubution: H1: Effect=delta
t_(1 − alpha/2)=1.96
t_(1−psi)=.84

t_{1 − a/2}

t_{1−psi}
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Power Analysis with Blocking

Assuming σ2 = σ2
1 = σ2

0 , we can solve for the minimum detectable effect:

MDES(δCR) = Mn−2

√
1

Np(1− p)
(7)

MDES(δBR) = Mn−k−1

√
1− R2

B

Np(1− p)
(8)

Mn−2 and Mn−k−1 are the multipliers

R2
B is the proportion of explained variation in the outcome predicted by the

blocks (Regress Y on Bj dummies)

The more similar observations are within blocks and the more different
blocks are from each other, the higher this predictive power is and the
larger the precision gain from blocking.
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Power Analysis with Blocking

MDE MDES N SD Sig Po mean Y MDE/Mean R

14.52 0.36 26 40 0.05 0.8 90 16.13 0.9
20.53 0.51 26 40 0.05 0.8 90 22.81 0.8
25.15 0.63 26 40 0.05 0.8 90 27.94 0.7
29.04 0.73 26 40 0.05 0.8 90 32.26 0.6

15.93 0.40 22 40 0.05 0.8 90 17.70 0.9
22.53 0.56 22 40 0.05 0.8 90 25.04 0.8
27.60 0.69 22 40 0.05 0.8 90 30.66 0.7
31.87 0.80 22 40 0.05 0.8 90 35.41 0.6
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Power Analysis with Blocking SD = 40
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Outline
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Threats to Internal and External Validity

Internal validity: can we estimate the treatment effect for our
particular sample?

Fails when there are differences between treated and controls (other
than the treatment itself) that affect the outcome and that we cannot
control for

External validity: can we extrapolate our estimates to other
populations?

Fails when outside the experimental environment the treatment has a
different effect
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Most Common Threats to Internal Validity

Failure of randomization

E.g. implementing partners assign their favorites to treatment group,
small samples, etc.

JTPA: Good balance

Non-compliance with experimental protocol

Failure to treat or “crossover”: Some members of the control group
receive the treatment and some in the treatment group go untreated
Can reduce power significantly

JTPA: only about 65% of those assigned to treatment actually enrolled
in training (compliance was almost perfect in the control group)

Attrition

Can destroy validity if observed potential outcomes are not
representative of all potential outcomes even with randomization
E.g. control group subjects are more likely to drop out of a study

JTPA: only 3 percent dropped out

Spillovers

Should be dealt with in the design
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Most Common Threats to External Validity

Non-representative sample

E.g. laboratory versus field experimentation

Subjects are not the same population that will be subject to the policy,
known as “randomization bias”

Non-representative program

The treatment differs in actual implementations

Scale effects

Actual implementations are not randomized (nor full scale)
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External Validity? Experimental Sites versus all Sites
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Internal vs. External Validity

Which one is more important?

One common view is that internal validity comes first. If you
do not know the effects of the treatment on the units in your
study, you are not well-positioned to infer the effects on units
you did not study who live in circumstances you did not
study. (Rosenbaum 2010, p. 56)

Randomization addresses internal validity. External validity is often
addressed by comparing the results of several internally valid studies
conducted in different circumstances and at different times.

The same issues apply in observation studies.
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Hardwork is in the Design and Implementation

Statistics are often easy; the implementation and design are often
hard.

Find partners, manage relationships, identify learning opportunities.

Designing experiments so that they are incentive-compatible:

Free “consulting”

Allocating limited resources (e.g. excessively large target groups)

Phased randomization as a way to mitigate ethical concerns with denial
of treatment

Encouragement designs

Monitoring

Potentially high costs.

Many things can go wrong with complex and large scale experiments.

Keep it simple in the field!
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Ethics and Experimentation

Fearon, Humphreys, and Weinstein (2009) used a field experiment to
examine if community-driven reconstruction programs foster social
reconciliation in post-conflict Liberian villages.

Outcome: funding raised for collective projects in public goods game played
with 24 villagers. Total payout to village is publicly announced.

We received a report that leaders in one community had gathered
villagers together after we left and asked people to report how much
they had contributed. We moved quickly to prevent any retribution
in that village, but also decided to alter the protocol for subsequent
games to ensure greater protection for game participants.

These changes included stronger language about the importance of
protecting anonymity, random audits of community behavior,
facilitation of anonymous reporting of violations of game protocol by
participants, and a new opportunity to receive supplemental funds
in a postproject lottery if no reports of harassment were received.
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Ethics and Experimentation

Respect for persons: Participants in most circumstances must give
informed consent.

Informed consent often done as part of the baseline survey.

If risks are minimal and consent will undermine the study, then
informed consent rules can be waived.

Beneficence: Avoid knowingly doing harm. Does not mean that all risk can
be eliminated, but possible risks must be balanced against overall benefits to
society of the research.

Note that the existence of a control group might be construed as
denying access to some benefit.

But without a control group, generating reliable knowledge about the
efficacy of the intervention may be impossible.

Justice: Important to avoid situations where one group disproportionately
bears the risks and another stands to received all the benefits.

Evaluate interventions that are relevant to the subject population
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Ethics and Experimentation

IRB approval is required in almost all circumstances.

If running an experiment in another country, you need to follow the local
regulations on experimental research.

Often poorly adapted to social science.
Or legally murky whether or not approval is required.

Still many unanswered questions and lack of consensus on the ethics of field
experimentation within Political Science!

Be prepared to confront wildly varying opinons on these issues.
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Conclusion: Experiments

Random assignment solves the identification problem for causal
inference based on minimal assumptions that we can control as
researchers

Random assignment balances observed and unobserved confounders,
which is why it is considered the gold standard for causal inference

Statistical analysis is simple, transparent, and results are typically not
model dependent, since confounders are controlled for “by design”

Design features can help to improve inferences

Always important to think about theory and external validity prior to
experimentation
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