350B Political Methodology Il, Winter 2016

Randomized Experiments

Jonathan Mummolo
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@ !dentification Under Random Assignment
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Selection Bias

Recall the selection problem when comparing the mean outcomes for the
treated and the untreated:

E[Y|D = 1] - E[Y|D = 0] = E[V4|D = 1] - E[Y,|D = (]

Differencgin Means
:F[Yl = YO‘D = ].l—i—;{E[Yo’D = 1] = E[YolD = O]};

ATT BIAS

How can we eliminate the bias term?
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Selection Bias

Recall the selection problem when comparing the mean outcomes for the
treated and the untreated:

E[Y|D = 1] - E[Y|D = 0] = E[V4|D = 1] - E[Y,|D = (]

Differencgin Means
:F[Yl = YO‘D = 1l+l{E[Y0’D = 1] = E[YolD = O]};

ATT BIAS

How can we eliminate the bias term?

@ As a result of randomization, the selection bias term will be zero
@ The treatment and control group will tend to be similar along all
characteristics (identical in expectation), including the potential

outcomes under the control condition
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|dentification Under Random Assignment

Identification Assumption
(Y1, Yo)ALD (random assignment)
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|dentification Under Random Assignment

Identification Assumption

(Y1, Yo)ALD (random assignment)

Identification Result

Problem: TATE — E[Yl — Yo]

is unobserved. But given random assignment

E[Y|D=1] = E[D-Yi+(1—-D)- YD =1]

= E[Vi|D=1]
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|dentification Under Random Assignment

Identification Assumption

(Y1, Yo)ALD (random assignment)

Identification Result

Problem: TATE — E[Yl — Yo]

E[Y|D =1]

E[Y|D = 0]

is unobserved. But given random assignment
= E[D-Yi+(1-D): YD =1]

= E[Y1|D =1]

= E[Yq]
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|dentification Under Random Assignment

Identification Assumption
(Y1, Yo)ALD (random assignment)

Identification Result

Problem: Tate = E[Y1 — Yb] is unobserved. But given random assignment

E[Y|D=1] = E[D-Yi+(1-D) YD =1]
— E[Vi|D=1]
= E[Y]

E[Y|D=0] = E[D-Yi+(1-D) Yo|D=0]
— E[Yo|D=0]
= E[Yq]

Tate = E[Y1 — Yo] = E[V1] — E[Yo] = E[Y|D = 1] - E[Y|D = 0]

Difference in Means
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

B W N |~
oo~ w| X
—~ o~ oX
= o~ w <
oo+~ r~D

What is 7a7e = E[Yl] — E[Yo]?
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

I Y1i Yoi Y D;
1 3 0 3 1
2 1 1 1 1
3 2 0 0 0
4 2 1 1 0
B[] >
E[Yo] 5

Tare = E[Y1] — E[Yo] =2—-5=15
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Yoi Y D;
1 3 ? 3 1
2 1 ? 1 1
3 ? 0 0 0
4 ? 1 1 0
B[] 7
E[Yo] ?

What is 7a7e = E[Yl] — E[Yo]?
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1 Yoi Y; D; P(D; =1)
1 3 ? 3 1 ?
2 1 ? 1 1 ?
3 ? 0 0 0 ?
4 ? 1 1 0 ?
E[V] 7
E[Yo] ?

What is Tate = E[Y1] —E[Y0]? In an experiment, the researcher controls the prob-
ability of assignment to treatment for all units P(D; = 1) and by imposing equal
probabilities we ensure that treatment assignment is independent of the potential
outcomes, i.e. (Y1, Yo)lLD.
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Yii Yoi Yi D; P(D; =1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4
E[V1] 2
E[Yo] 5

What is tare = E[Y1] — E[Yo]? Given that D; is randomly assigned with
probability 1/2, we have E[Y|D = 1] = E[Y1|D = 1] = E[Y1].
All possible randomizations with two treated units:

Treated Units: 1&2 1&3 1&4 2&3 2&4 3&4
Average Y|D = 1: 2 25 25 15 15 2

So E[Y|D = 1] = E[v4] = 2
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Yii Yoi Y D; P(D; =1)
1 3 0 3 1 274
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4
E[Vi] 2
E[Yo] 5

By the same logic, we have: E[Y|D = 0] = E[Y;|D = 0] = E[Yy] = .5.
Therefore the average treatment effect is identified:

Tare = E[V1] — E[Yo] = E[Y|D = 1] - E[Y|D = 0]

Difference in Means
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Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Yii Yoi Y D; P(D;i=1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4
E[Vi] 2
E[Yo] 5

Also since E[Y|D = 0] = E[Yo|D = 0] = E[Y|D = 1] = E[Y0]
we have that

Tarr = E[Yi—Y|D =1]=E[Y[D =1] - E[Y,|D = 0]
E[Yi1] — E[Yo] = E[Y1 — Y{]

= TATE
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|dentification under Random Assignment
Identification Assumption
(Y1, Yo)ALD (random assignment)

Identification Result

We have that

E[Yo|D = 0] = E[Yo] = E[Yo|D = 1]

and therefore

E[Y|D = 1] — E[Y|D = 0] E[Y1 — Yo|D = 1]+ {E[Yo|D = 1] — E[Yo|D = 0]}

Difference in Means ATT BIAS
E[Yr — Yo|D =1]
—_———

ATT
As a result,

E[Y|D = 1] — E[Y|D = 0] = 7a7e = Ta7T

Difference in Means
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|dentification in Randomized Experiments

Identification Assumption

Given random assignment (Y1, Yo)1LD

Identification Result
Let Fy,(y) be the cumulative distribution function (CDF) of Yy, then

Fv,(y) = Pr(Yo<y)=Pr(Yo<y|D=0)
Pr(Y < y|D = 0).

Similarly,
Fv.(y) =Pr(Y <y|D =1).

So the effect of the treatment at any quantile 6 € [0,1] is identified:
ag = Qo(Y1) — Qo(Yo) = Qo(Y[D =1) — Qp(Y|D =0)

where Fy,(Qo(Y4)) = 6.
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© Estimation Under Random Assignment
@ Average Treatment Effect
@ Standard Error for ATE
@ Hypothesis Testing
@ Covariates

@ Hypothesis Testing in Small Samples
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© Estimation Under Random Assignment

@ Average Treatment Effect
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Estimation Under Random Assignment

Consider a randomized trial with N individuals.

Tate = E[Y: — Yo] = E[Y|D = 1] - E[Y|D = 0]
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Estimation Under Random Assignment

Consider a randomized trial with N individuals.

Tate = E[Y: — Yo] = E[Y|D = 1] - E[Y|D = 0]

By the analogy principle we use

T=Yi-Yo
Vl_ZYib S Yi;
> D =)

with Ny = Ei D; and Ng = N — Nj.

Under random assignment, T is an unbiased and consistent estimator of TaTe
A~ ~ P
(E[T] = TATE and ™ — TATE-)

ok MWAL =3




Unbiasedness Under Random Assignment

One way of showing that 7 is unbiased is to exploit the fact that under

independence of potential outcomes and treatment status, E[D] = % and
E[l - D] = ¢
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Unbiasedness Under Random Assignment

One way of showing that 7 is unbiased is to exploit the fact that under
mdependence of potential outcomes and treatment status, E[D] = 7 and
E[l-D] =

Rewrite the estimators as follows:

Z D-vi (1-D) Yo
N Ni/N No/N
Take expectations with respect to the sampling distribution given by the

design. Under the Neyman model, Y7 and Yj are fixed and only D; is
random.
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Unbiasedness Under Random Assignment

One way of showing that 7 is unbiased is to exploit the fact that under
mdependence of potential outcomes and treatment status, E[D] = 7 and
E[l-D] =

Rewrite the estimators as follows:

Z D-vi (1-D) Yo
N Ni/N No/N
Take expectations with respect to the sampling distribution given by the

design. Under the Neyman model, Y7 and Yj are fixed and only D; is
random.

1 [/ED]-Y1 E[1-D)]-Y) I« B
EM_N;( NN No/N 0>_N§(Yl_y°)”

24 /181



1.00-

0.75-

0.50 -

count

0.25-

0.00 - i :

Potential Outcomes Under Control

Potential Oulcome Under Control

N
&



Potenial Outcomes Under Treatment
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Treatment Effects
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© Estimation Under Random Assignment

@ Standard Error for ATE
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What is the Estimand?

@ So far we have emphasized effect estimation, but what about
uncertainty?

@ In the design based literature, variability in our estimates can arise
from two sources:

© Sampling variation induced by the procedure that selected the units
into our sample.

© Variation induced by the particular realization of the treatment variable.

@ This distinction is important, but often ignored
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What is the Estimand?
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SATE and PATE

@ Typically we focus on estimating the average causal effect in a
particular sample: Sample Average Treatment Effect (SATE)

e Uncertainty arises only from hypothetical randomizations.

o Inferences are limited to the sample in our study.

@ Might care about the Population Average Treatment Effect (PATE)

o Requires precise knowledge about the sampling process that selected
units from the population into the sample.

o Need to account for two sources of variation:

e Variation from the sampling process

o Variation from treatment assignment.

@ Thus, in general, Var(P/AT\E) > Var(SA/T\E).
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Standard Error for Sample ATE

The standard error is the standard deviation of a sampling distribution:

SE; = %Zf(@ - 5)2 (with J possible random assignments).

i Y1i Yoi Y D; P(D; =1)
1 3 0 3 1 274
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

ATE estimates given all possible random assignments with two treated units:

Treated Units: 1& 2 1&3 1&4 2&3 2&4 3&4
ATE: 15 15 2 1 15 15

The average ATE is 1.5 and therefore the true standard error is
SEze = \/%[(1.5 —1.5)2 4 (1.5 — 1.5)2 + (2 — 1.5)2 + (1 — 1.5)2 + (1.5 — 1.5)2 + (1.5 — 1.5)2] ~ .28
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Standard Err r Sample ATE

Standard Error for Sample ATE

Given complete randomization of N units with N; assigned to treatment and Ny = N — N; to
control, the true standard error of the estimated sample ATE is given by

N — N]_ Var[Yl,-] N — No Var[Yo,-] ( 1 >
SE—~ = 2Cov[Yi:, Yoi
ATE \/(N—l) Ny (N1 No nl vy ov[Yii, Yoil

with population variances and covariance

N N 2
1 Yi
Var[ Y] = I Z (Ydi _ EIN l> = U%/d\D,-:d

1

N N N
1 Yii Yoi
COV[Y]_,', Y(),'] = N E (Yl,' — 721,\’ L > <Y0,' = ZIN 9 > =] 02Y1,Y0
1
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Standard Err r Sample ATE

Standard Error for Sample ATE

Given complete randomization of N units with N; assigned to treatment and Ny = N — N; to
control, the true standard error of the estimated sample ATE is given by

N — N]_ Var[Yl,-] N — No Var[Yo,-] ( 1 >
SE—~ = 2Cov[Yi:, Yoi
ATE \/(N—l) Ny (N1 No nl vy ov[Yii, Yoil

with population variances and covariance

N N 2
1 Yi
Var[ Y] = I Z (Ydi _ EIN l> = U%/d\D,-:d

1

N N N
1 Yii Yoi
Cov[Yii, Yoi]l = N E (Yl,- — le\ll> <Y0,- _ ZIN 0 > = ‘7%1,\/0

1

Plugging in, we obtain the true standard error of the estimated sample ATE

42\ .25 4-2\ 5 1
SE— = — ) = — = ——— ) 2(—.25) ~ .28
ATE \/(4—1) 2 +(4—1) 2+(4—1) ( )
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Standard Err r Sample ATE

Standard Error for Sample ATE

Given complete randomization of N units with N; assigned to treatment and Ny = N — N; to
control, the true standard error of the estimated sample ATE is given by

N — N]_ Var[Yl,-] N — No Var[Yo,-] ( 1 >
SE—~ = 2Cov[Yi:, Yoi
ATE \/(N—l) Ny (N1 No nl vy ov[Yii, Yoil

with population variances and covariance

N N 2
1 Yi
Var[ Y] = I Z (Ydi _ EIN l> = U%/d\D,-:d

1

N N N
1 Yii Yoi
COV[Y]_,', Y(),'] = N E (Yl,' — 721,\’ L > <Y0,' = ZIN 9 > =] 02Y1,Y0
1

Standard error decreases if:

@ N grows
@ Var[Yi], Var[Yy] decrease

@ Cov[Y1, Yo] decreases
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Conservative Estimator SEA/-T\E

Conservative Estimator for Standard Error for Sample ATE

\/ Var[ V1] i Var[ o]

SE — =
ATE Ny No

with estimators of the sample variances given by

N N 2
— 1 D D=1 Yii N
Var[Yy] = 17 E <Y1i _Zib= ) o U§/|D;:1

M- 1 Ny
o N Z'\D 0 Yoi 2
i| D=t =
Var[Yoi] = No— 1 Z (Yo,' = No > = U$|D,=0
i|D;=0
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SE_ _ \/Vﬁi] Var[Yoil

T

with estimators of the sample variances given by

N N 2
— 1 >ip=1 Yai _
Var[Yil= —— > <Y1i LR 5% D=1

N N 2
— 1 > D=0 Yoi ~
Var[Yo] = —— > (Ym == ) % 0,~0

What about the covariance?
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Conservative Estimator SEA/T\E

tive Estimator or Sample ATE
o Var[Va] | Var[Yal
e 2R 0

with estimators of the sample variances given by

N N 2
1 Sh v\ L
Val’[Yl,'] = Z <Y1,‘ = 7" = U%/|Di:1

w1 i| D=1

N N 2
— 1 > i|D—0 Yoi -
Var[Yoil = —— E (Ym - =Ib=0 ) ‘73’|D,-=o

@ Conservative compared to the true standard error, i.e. SEA/;E < SEZﬁE

@ Asymptotically unbiased in two special cases:
o if 7; is constant (i.e. Cor[Y1, Yo] =1)
o if we estimate standard error of population average treatment effect
(Cov[Yi, Yo] is negligible when we sample from a large population)

@ Equivalent to standard error for two sample t-test with unequal variances or “robust”
standard error in regression of Y on D 43 /181



Proof: S

Upper bound for standard error is when Cor[Y1, Yo] = 1:

Corva, o] = — LYol 4 L oty o] < /Var[VaVar[Yal
v/ Var[Y1]Var[Yo]

N — Ni\ Var[Yi] (N — No) Var[Yo] < 1
SE~ = 2Cov[V1, Y
ATE \/(N—l) v TN N T \wo1)2Ceviv Yol

1 /N N
. \/ (J Var[Y1] + ﬁl Var[Yo] 4 2Cov[ Y1, Yo])
0

N—-1\N;g

\/1 (% Var[Yi] + % Var[Yo] + 2 Var[Yl]Var[Yo]>
1 0

N-—-1

1 /N N
\//\/—1 (V(l) Var[Y1] + ﬁzVar[Yo] + Var[Yi] + Var[Yg])

Last step follows from the following inequality

(v/Var[Y1] — v/ Var[Ys])? 0

>
Var[Y1] — 24/ Var[Y1]Var[Yy] + Var[Yo] > 0 <= Var[Y1] + Var[Yo] > 2/ Var[Y1]Var[Yo]
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< SE

Proof: SE —

ATE = ATE

1 No
SEq7z < \/N—l (ﬁ Var[Y1] + —Var[Yg] + Var[Y1] + Var[Yo])

Ng Var[Yl] =+ le Var[Yo] + NlNo(Var[Yl] + Var[Yo])
(N — 1)Ny Ny

(Ng + Ny No)Var[Yl] + (N% + N1N0)Var[Yo]
(N — 1)Ny No

(No —+ N1)N0 Var[Yl] (N1 —+ No)N1 Var[Yo]
- (N — 1)Ny No (N —1)Ny No

N Var[Y1] N Var[Yy]
- (N — 1)N1 (N — l)No

N ( Var[Yl] Var[Yo])
N—-1 Ny No
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N 1 1
ATE S \//\I—]_ (ﬁl Val’[Y]_] + ﬁOVar[Yg])

Now, we need to estimate Var[Y1] and Var[Y;]. Recall that for simple random sampling without

replacement, the unbiased estimator of a population variance (o2) is §2( nfl)(%) which can

be rewritten as &5_1(%). In the set-up presented here, we have defined Var[Yy] to

correspond to &5_1 (separately for d = 1,0). Thus, inserting the unbiased estimators in for
Var[Y1] and Var[Yp], we get:

[ G () ()

_ | (Var[v] | Var[Yo]
[ =)

[Varlvi] | VarlYo] _ o

So the estimator for the standard error is conservative.

Thus:
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Standard Error for Sample ATE

a W N |-
oo = w| X

— o~ oX
= o~ w X

—

SE ;7 estimates given all possible assignments with two treated units:

Treated Units: 1& 2 1&3 1&4 2&3 2&4 3&4
ATE: 1.5 15 2 1 1.5 15
SE ;7 1.11 5 71 71 5 5

The average ﬁﬁ is &~ .67 compared to the true standard error of SE ;= ~ .28
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© Estimation Under Random Assignment

@ Hypothesis Testing
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Example: Effect of Training on Earnings

@ Treatment Group:

o Ny = 7,487 )
o Estimated Average Earnings Y;: $16,199
o Estimated Sample Standard deviation Gy|p,—;: $17,038

@ Control Group :

o Ny =3,717 _
o Estimated Average Earnings Yy: $15,040
o Estimated Sample deviation oy |p,—o: $16,180

@ Estimated average effect of training:

49/181



Example: Effect of Training on Earnings

@ Treatment Group:

o Ny = 7,487 )
o Estimated Average Earnings Y;: $16,199
o Estimated Sample Standard deviation Gy|p,—;: $17,038

@ Control Group :
o Ny =3,717 _
o Estimated Average Earnings Yy: $15,040
o Estimated Sample deviation oy |p,—o: $16,180

@ Estimated average effect of training:
o Tare = Y1 — Yo = 16,199 — 15,040 = $1, 159

@ Estimated standard error for effect of training:
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Example: Effect of Training on Earnings

@ Treatment Group:

o Ny = 7,487 )
o Estimated Average Earnings Y;: $16,199
o Estimated Sample Standard deviation Gy|p,—;: $17,038

@ Control Group :
o Ny =3,717 ~
o Estimated Average Earnings Yy: $15,040
o Estimated Sample deviation 8y|Di:0: $16,180

@ Estimated average effect of training:
o Tare = Y1 — Yo = 16,199 — 15,040 = $1, 159

@ Estimated standard error for effect of training:

_ /17,0382 | 16,1802
= 7487 + 3717 ~ $330

@ Is this consistent with a zero average treatment effect aare = 07
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Testing the Null Hypothesis of Zero Average Effect

@ Under the null hypothesis Hy: Tare = 0, the average potential outcomes in
the population are the same for treatment and control: E[Y;] = E[Yp].

@ Since units are randomly assigned, both the treatment and control groups
should therefore have the same sample average earnings

@ However, we in fact observe a difference in mean earnings of $1, 159

@ What is the probability of observing a difference this large if the true average
effect of the training were zero (i.e. the null hypothesis were true)?
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Testing the Null Hypothesis of Zero Average Effect

@ Use a two-sample t-test with unequal variances:

7 1,1
o T _ 51,159 ~ 3.5

oY D=1 . 7% 1Di=0 $17,038%  $16,180°
Ny No 7,487 3,717

e From basic statistical theory, we know that ty < N(0,1)

e And for a standard normal distribution, the probability of observing a
value of t that is larger than |t| > 1.96 is < .05

e So obtaining a value as high as t = 3.5 is very unlikely under the null
hypothesis of a zero average effect

o We reject the null hypothesis Hyg: 79 = 0 against the alternative Hj:
7o # 0 at asymptotic 5% significance level whenever |t| > 1.96.

e Inverting the test statistic we can construct a 95% confidence interval

Tate £1.96 - gEA/ﬁ:-
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Testing the Null Hypothesis of Zero Average Effect

R Code

> d <- read.dta("jtpa.dta")
> head(d[,c("earnings","assignmt")])
earnings assignmt
1353
4984
27707
31860
26615

O r P, P K~

meanAsd <- function(x){
out <- c(mean(x),sd(x))
names (out) <- c("mean","sd")
return(out)

}

aggregate(earnings~assignmt,data=d,meanAsd)
assignmt earnings.mean earnings.sd

0 15040.50 16180.25
2 1 16199.94 17038.85

VV + + + + V. VO WNDR

[y
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Testing the Null Hypothesis of Zero Average Effect

R Code
> t.test(earnings~assignmt,data=d,var.equal=FALSE)

Welch Two Sample t-test

data: earnings by assignmt
t = -3.5084, df = 7765.599, p-value = 0.0004533
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1807.2427 -511.6239
sample estimates:
mean in group O mean in group 1
15040.50 16199.94
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Regression to Estimate the Average Treatment Effect

Estimator (Regression)

The ATE can be expressed as a regression equation:

Yo = D;iYii+(1-D;) Yo
= Yo+ (Yai — Yoi) D
Yo +(Y1—Yo) Di +{(Yio— Yo) + D; - [(Yin — Y1) — (Yio — Yo)I}
~
o TReg €

= o+ TregDi + €

@ Treg could be biased for Ta7e in two ways:
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Regression to Estimate the Average Treatment Effect

Estimator (Regression)

The ATE can be expressed as a regression equation:

Yo = D;iYii+(1-D;) Yo
= Yo+ (Yai — Yoi) D
Yo +(Y1—Yo) Di +{(Yio— Yo) + D; - [(Yin — Y1) — (Yio — Yo)I}
~
o TReg €

= o+ TregDi + €

@ Treg could be biased for Ta7e in two ways:

o Baseline difference in potential outcomes under control that is
correlated with D;.

o Individual treatment effects 7; are correlated with D;

e Under random assignment, both correlations are zero in expectation
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Regression to Estimate the Average Treatment Effect

Estimator (Regression)
The ATE can be expressed as a regression equation:
Y, = Divhi+(1- D) Yo
= Yoi+ (Yai — Yoi) D
= \\72/4—(371 — ¥0) Di + {(Yio — Yo) + D; - [(Yir — Y1) — (Yo — Yo)I}

[e%

TReg €

= o+ TregDi + €

@ Treg could be biased for Ta7e in two ways:

o Baseline difference in potential outcomes under control that is
correlated with D;.

o Individual treatment effects 7; are correlated with D;
e Under random assignment, both correlations are zero in expectation

@ Effect heterogeneity implies “heteroskedasticity”, i.e. error variance differs
by values of D;.

o Neyman model implies “robust” standard errors.

@ Can use regression in experiments without assuming constant effects. 5,14,




ression to Estimate the Average Treatment Effect

R Code

ot

(

library(sandwich)
library(lmtest)

lout <- lm(earnings~assignmt,data=d)
coeftest(lout,vcov = vcovHC(lout, type = "HC1")) # matches Stata

test of coefficients:
Estimate Std. Error t value Pr(>ltl)
Intercept) 15040.50 265.38 56.6752 < 2.2e-16 ***

assignmt 1159.43 330.46 3.5085 0.0004524 *x*x*
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© Estimation Under Random Assignment

@ Covariates
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Covariates and Experiments

Y1 Y1 Y+ Yo Yo Yo
X X X X X X
Y1 | Yo

X Y1 YO
Y1 | Yo X
X
Y1 | Yo
X Y1+ | Yo
Y+ | Yo X
X
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Covariates

@ Randomization is gold standard for causal inference because in
expectation it balances observed but also unobserved characteristics
between treatment and control group.

@ Unlike potential outcomes, you observe baseline covariates for all
units. Covariate values are predetermined with respect to the
treatment and do not depend on D;.

@ Under randomization, fx|p(X|D = 1) 2 fx|p(X|D = 0) (equality in
distribution).

@ Similarity in distributions of covariates is known as covariate balance.

o If this is not the case, then one of two possibilities:
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Covariates

Randomization is gold standard for causal inference because in
expectation it balances observed but also unobserved characteristics
between treatment and control group.

Unlike potential outcomes, you observe baseline covariates for all
units. Covariate values are predetermined with respect to the
treatment and do not depend on D;.

Under randomization, fx|p(X|D = 1) 2 fx|p(X|D = 0) (equality in
distribution).
Similarity in distributions of covariates is known as covariate balance.

If this is not the case, then one of two possibilities:
e Randomization was compromised.
o Sampling error (bad luck)

One should always test for covariate balance on important covariates,
using so called “balance checks” (eg. t-tests, F-tests, etc.)
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Covariates and Experiments
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Covariates and Experiments

300 -

count

'
0.0
Covariate Imbalance

65 /181



Regression with Covariates

@ Practioners often run some variant of the following model with
experimental data:

Yi=a+71Di+ XiB +¢

@ Why include X; when experiments “control” for covariates by design?
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Regression with Covariates

@ Practioners often run some variant of the following model with
experimental data:

Yi=a+71Di+ XiB +¢

@ Why include X; when experiments “control” for covariates by design?

o Correct for chance covariate imbalances that indicate that 7 may be far
from TATE -
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Regression with Covariates

@ Practioners often run some variant of the following model with
experimental data:

Yi=a+71Di+ XiB +¢

@ Why include X; when experiments “control” for covariates by design?

o Correct for chance covariate imbalances that indicate that 7 may be far
from TATE -

o Increase precision: remove variation in the outcome accounted for by
pre-treatment characteristics, thus making it easier to attribute
remaining differences to the treatment.
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Regression with Covariates

@ Practioners often run some variant of the following model with
experimental data:

Yi=a+71Di+ XiB +¢

@ Why include X; when experiments “control” for covariates by design?
o Correct for chance covariate imbalances that indicate that 7 may be far
from TATE -

o Increase precision: remove variation in the outcome accounted for by
pre-treatment characteristics, thus making it easier to attribute
remaining differences to the treatment.

@ ATE estimates are robust to model specification (with sufficient N).
o Never control for post-treatment covariates!
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Covariate Adjustment with Regression

Freedman (2008) shows that regression of the form:

Yi =+ TregDi + f1Xi + €

@ Ty is consistent for ATE and has small sample bias (unless model is true)
e bias is on the order of 1/n and diminishes rapidly as N increases
@ T Will not necessarily improve precision if model is incorrect
e But harmful to precision only if more than 3/4 of units are assigned to
one treatment condition or Cov(D;, Y1 — Yp) larger than Cov(D;, Y).

Lin (2013) shows that regression of the form:
Yi = &+ Tinteract Dj + 1 - (Xi = X) + B2 - Dj - (X; = X) + ¢

@ Tinteract i consistent for ATE and has the same small sample bias

@ Cannot hurt asymptotic precision even if model is incorrect and will likely
increase precision if covariates are predictive of the outcomes.

@ Results hold for multiple covariates
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True ATE and Unadjusted Regression Estimator
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Adjusted Regression Estimator
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Adjusted Regression Estimator
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Adjusted Regression Estimator
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Covariate Adjustment with Regression

06~

density

02-

0.0-

Estimated Treatment Effects

76 /181



Why are Experimental Findings Robust to Alternative

Specifications?

Note the following important property of OLS known as the
Frisch-Waugh-Lovell (FWL) theorem or Anatomy of Regression:

,8 N COV(Y,',)?k,')
k= Var(>"<k,-)

where Xy; is the residual from a regression of xi; on all other covariates.
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Why are Experimental Findings Robust to Alternative

Specifications?

Note the following important property of OLS known as the
Frisch-Waugh-Lovell (FWL) theorem or Anatomy of Regression:

,8 N COV(Y,',)?k,')
k— N, 7~ N
Var(%k;)
where Xy; is the residual from a regression of xi; on all other covariates.

Any multivariate regression coefficient can be expressed as the coefficient
on a bivariate regression between the outcome and the regressor, after
“partialling out” other variables in the model.

78 /181



Why are Experimental Findings Robust to Alternative

Specifications?

Note the following important property of OLS known as the
Frisch-Waugh-Lovell (FWL) theorem or Anatomy of Regression:

,8 N COV(Y,',)?k,')
k— N, 7~ N
Var(%k;)
where Xy; is the residual from a regression of xi; on all other covariates.

Any multivariate regression coefficient can be expressed as the coefficient
on a bivariate regression between the outcome and the regressor, after
“partialling out” other variables in the model.

Let D; be the residuals after regressing D; on X;. For experimental data,
on average, what will D; be equal to?
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Why are Experimental Findings Robust to Alternative

Specifications?

Note the following important property of OLS known as the
Frisch-Waugh-Lovell (FWL) theorem or Anatomy of Regression:

,8 N COV(Y,',)?k,')
k= Var(>"<k,-)

where Xy; is the residual from a regression of xi; on all other covariates.

Any multivariate regression coefficient can be expressed as the coefficient
on a bivariate regression between the outcome and the regressor, after
“partialling out” other variables in the model.

Let D; be the residuals after regressing D; on X;. For experimental data,
on average, what will D; be equal to?

Since D; ~ D;, multivariate regressions will yield similar results to bivariate
regressions.
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Summary: Covariate Adjustment with Regression

@ One does not need to believe in the classical linear model (linearity and
constant treatment effects) to tolerate or even advocate OLS covariate
adjustment in randomized experiments (agnostic view of regression).

@ Covariate adjustment can buy you power (and thus allows for a smaller
sample).

@ Small sample bias might be a concern in small samples, but usually
swamped by efficiency gains.

@ Since covariates are controlled for by design, results are typically not model
dependent.

@ Best if covariate adjustment strategy is pre-specified as this rules out fishing.

@ Always show the unadjusted estimate for transparency.
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© Estimation Under Random Assignment

@ Hypothesis Testing in Small Samples
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Testing in Small Samples: Fisher's Exact Test

@ Test of differences in means with large N:

Ho : E[Y1] = E[Yo], Hi: E[Y1] # E[Y5] (weak null)

83/181



Testing in Small Samples: Fisher's Exact Test

@ Test of differences in means with large N:

Ho : E[Y1] = E[Yo], Hi: E[Y1] # E[Y5] (weak null)

o Fisher's Exact Test with small N:

Ho : Y1 = Yo,
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Testing in Small Samples: Fisher's Exact Test

@ Test of differences in means with large N:

Ho : E[Y1] = E[Yo], Hi: E[Y1] # E[Y5] (weak null)

o Fisher's Exact Test with small N:

Ho:Y1=Yy, Hi:Y1# Yo (sharp null of no effect)

85/181



Testing in Small Samples: Fisher's Exact Test

@ Test of differences in means with large N:

Ho : E[Y1] = E[Yo], Hi: E[Y1] # E[Y5] (weak null)

o Fisher's Exact Test with small N:

Ho:Y1=Yy, Hi:Y1# Yo (sharp null of no effect)

@ Let Q be the set of all possible randomization realizations.

@ We only observe the outcomes, Y;, for one realization of the
experiment. We calculate 7 = Y; — Yp.
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Testing in Small Samples: Fisher's Exact Test

@ Test of differences in means with large N:

Ho : E[Y1] = E[Yo], Hi: E[Y1] # E[Y5] (weak null)

o Fisher's Exact Test with small N:

Ho:Y1=Yy, Hi:Y1# Yo (sharp null of no effect)

@ Let Q be the set of all possible randomization realizations.

@ We only observe the outcomes, Y;, for one realization of the
experiment. We calculate 7 = Y; — Yp.

@ Under the sharp null hypothesis, we can compute the value that the
difference in means estimator would have taken under any other
realization, 7(w), for w € Q.
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Testing in Small Samples: Fisher's Exact Test

i Y1i Yoi D;
1 3 ? 1
2 1 ? 1
3 ? 0 0
4 ? 1 0
TATE 1.5

What do we know given the sharp null Hy : Y1 = Yp?
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Testing in Small Samples: Fisher's Exact Test

i Y1i Yoi D;
1 3 3 1
2 1 1 1
3 0 0 0
4 1 1 0
TATE 1.5
7(w) 15

Given the full schedule of potential outcomes under the sharp null, we can
compute the null distribution of ATE, across all possible randomization.
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Testing in Small Samples: Fisher's Exact Test

i Y1i Yoi D; D;

1 3 3 1 1

2 1 1 1 0

3 0 0 0 1

4 1 1 0 0
TATE 1.5

7(w) 15 05
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Testing in Small Samples: Fisher's Exact Test

i Y1i Yoi D; D; D

1 3 3 1 1 1

2 1 1 1 0 0

3 0 0 0 1 0

4 1 1 0 0 1
TATE 1.5

#(w) 15 05 15
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Testing in Small Samples: Fisher's Exact Test

i Y1i Yoi D; Di D; D Di D
1 3 3 1 1 1 0 0 0
2 1 1 1 0 0 1 1 0
3 0 0 0 1 0 1 0 1
4 1 1 0 0 1 0 1 1
TATE 1.5
#(w) 15 05 15 -15 -5 -15

So Pr(7(w) > Tare) = 2/6 ~ .33.

Which assumptions are needed?
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Testing in Small Samples: Fisher's Exact Test

i Y1i Yoi D; Di D; D Di D
1 3 3 1 1 1 0 0 0
2 1 1 1 0 0 1 1 0
3 0 0 0 1 0 1 0 1
4 1 1 0 0 1 0 1 1
TATE 1.5
#(w) 15 05 15 -15 -5 -15

So Pr(&(w) > Tate) = 2/6 =~ .33.

Which assumptions are needed? None! Randomization as “reasoned basis
for causal inference” (Fisher 1935)

95/181



© Examples
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Experiments in Popular Culture
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Rise of Experiments

Large increase in the use of experiments in the social sciences: laboratory, survey,
and field experiments (see syllabus)

Abbreviated list of examples:

@ Program Evaluation: development programs, education programs, weight
loss programs, fundraising, deliberative polls, virginity pledging, advertising
campaigns, mental exercise for elderly

@ Public policy evaluations: teacher pay, class size, speed traps, vouchers,
alternative sentencing, job training, health insurance subsidies, tax
compliance, public housing, jury selection, police interventions

@ Behavioral Research: persuasion, mobilization, education, income,
interpersonal influence, conscientious health behaviors, media exposure,
deliberation, discrimination

@ Research on Institutions: rules for authorizing decisions, rules of succession,
monitoring performance, transparency, corruption auditing, electoral systems
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Experiments from Political Science and Economics

Voter mobilization (Nickerson, Gerber and Green)

Voting mechanisms (Olken)

Health insurance reform (Finkelstein et al.)

Race-based discrimination in labor markets (Bertrand and
Mullainathan)

Clientelistic vs programmatic presidential campaigns (Wantchekon)
Female incumbents (Duflo)

Information interventions for Elites (Butler)

Monitoring interventions (Ichino)

Audience costs (Tomz)

Many more ...
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Social Pressure Experiment

@ Voter turnout theories based on rational self-interested behavior generally
fail to predict significant turnout unless they account for the utility that
citizens receive from performing their civic duty.

@ Two aspects of this type of utility: intrinsic satisfaction from behaving in
accordance with a norm and extrinsic incentives to comply.

@ Gerber, Green, and Larimer (2008) test these motives in a large scale field
experiment by applying varying degrees of intrinsic and extrinsic pressure on
voters using a series of mailings to 180,002 households before the August
2006 primary election in Michigan.
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Social Pressure Experiment

o Civic Duty
e Encouraged to vote.
o Hawthorne

e Encouraged to vote.

o Told that researchers would be checking on whether they voted: “YOU
ARE BEING STUDIED!”
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Social Pressure Experiment

o Civic Duty
e Encouraged to vote.

o Hawthorne
e Encouraged to vote.
o Told that researchers would be checking on whether they voted: “YOU
ARE BEING STUDIED!”

o Self
e Encouraged to vote.
o Told that whether one votes is a matter of public record.
e Shown whether members of their own household voted in the last two
elections and promised to send post-card after election indicating
whether or not they voted.
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Social Pressure Experiment

o Civic Duty
e Encouraged to vote.

o Hawthorne
e Encouraged to vote.
o Told that researchers would be checking on whether they voted: “YOU
ARE BEING STUDIED!”

o Self
e Encouraged to vote.
o Told that whether one votes is a matter of public record.
e Shown whether members of their own household voted in the last two
elections and promised to send post-card after election indicating
whether or not they voted.

@ Neighbors
o Like Self treatment but in addition recipients are shown whether the
neighbors on the block voted in the last two elections.
o Promised to inform neighbors whether or not subject voted after

election.
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Example: Social Pressure Experiment

Dear Registered Voter:
WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for
years, but it only seems to get worse. This year, we're taking a new approach.
We're sending this mailing to you and your neighbors to publicize who does and
does not vote.

The chart shows the names of some of your neighbors, showing which have voted in
the past. After the August 8 election, we intend to mail an updated chart. You
and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY —VOTE!

MAPLE DR Aug 04 Nov 04 Aug 06
9995 JOSEPH JAMES SMITH Voted Voted
9995 JENNIFER KAY SMITH Voted
9997 RICHARD B JACKSON Voted
9999 KATHY MARIE JACKSON Voted
9999 BRIAN JOSEPH JACKSON Voted

9991 JENNIFER KAY THOMPSON Voted

AAA4 AR - AR A A~
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Example: Social Pressure Experiment

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group

Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201
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Example: Social Pressure Experiment

d <- read.dta("gerber.dta")

covars <- c("hh_size","g2002","g2000","p2004","p2002","p2000","sex","yob")
print (aggregate(d[,covars] ,by=list (d$treatment) ,mean) ,digits=3)
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Example: Social Pressure Experiment

d <- read.dta("gerber.dta")
covars <- c("hh_size","g2002","g2000","p2004","p2002","p2000","sex","yob")
print (aggregate(d[,covars] ,by=list (d$treatment) ,mean) ,digits=3)

Group.1 hh_size g2002 g2000 p2004 p2002 p2000 sex yob

1 Control 1.91 0.834 0.866 0.417 0.409 0.265 0.502 1955
2 Hawthorne 1.91 0.836 0.867 0.419 0.412 0.263 0.503 1955
3 Civic Duty 1.91 0.836 0.865 0.416 0.410 0.266 0.503 1955
4 Neighbors 1.91 0.835 0.865 0.423 0.406 0.263 0.505 1955
5 Self 1.91 0.835 0.863 0.421 0.410 0.263 0.501 1955
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Example: Social Pressure Experiment

print (aggregate(d[,covars],by=1list (d$treatment) ,sd) ,digits=3)
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Example: Social Pressure Experiment

print (aggregate(d[,covars],by=1list (d$treatment) ,sd) ,digits=3)

Group.1 hh_size g2002 g2000 p2004 p2002 p2000 sex yob

1 Control  0.720 0.294 0.271 0.444 0.435 0.395 0.273 12.9
2 Hawthorne 0.718 0.295 0.270 0.444 0.435 0.393 0.272 12.9
3 Civic Duty 0.729 0.293 0.270 0.444 0.435 0.396 0.275 12.9
4 Neighbors 0.728 0.295 0.273 0.445 0.434 0.393 0.274 13.0
5 Self 0.718 0.294 0.274 0.444 0.434 0.392 0.274 12.8
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Example: Social Pressure Experiment

print (aggregate(d[,c("yob")],by=1list (d$treatment) ,quantile) ,digits=3)
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Example: Social Pressure Experiment

print (aggregate(d[,c("yob")],by=1list (d$treatment) ,quantile) ,digits=3)

Group.1l x.0% x.25% x.50% x.75% x.100%
1 Control 1900 1946 1957 1964 1986
2 Hawthorne 1908 1946 1957 1964 1984
3 Civic Duty 1906 1947 1957 1964 1986
4 Neighbors 1905 1946 1957 1964 1986
5 Self 1908 1946 1957 1964 1986
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Example: Social Pressure Experiment

form <- as.formula(paste("treatment","~",paste(covars,collapse="+")))
form
treatment ~ hh_size + g2002 + g2000 + p2004 + p2002 + p2000 +

sex + yob

summary (lm(form,data=d))
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Example: Social Pressure Experiment

form <- as.formula(paste("treatment","~",paste(covars,collapse="+")))
form
treatment ~ hh_size + g2002 + g2000 + p2004 + p2002 + p2000 +

sex + yob

summary (lm(form,data=d))

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.7944614 0.5496699 3.265 0.0011 *x*

hh_size -0.0032727 0.0051836 -0.631 0.5278
g2002 0.0121818 0.0123389 0.987  0.3235
g2000 -0.0233410 0.0133489 -1.749 0.0804 .
p2004 0.0118147 0.0079130 1.493 0.1354
p2002 0.0018055 0.0081488 0.222  0.8247
p2000 -0.0031604 0.0087721 -0.360 0.7186
sex 0.0031331 0.0125052 0.251  0.8022
yob 0.0001671 0.0002815 0.594  0.5528

Residual standard error: 1.449 on 179993 degrees of freedom
Multiple R-squared: 4.004e-05, Adjusted R-squared: -4.406e-06
F-statistic: 0.9009 on 8 and 179993 DF, p-value: 0.5145
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Example: Social Pressure Experiment

TABLE 3. OLS Regression Estimates of the Effects of Four Mail Treatments on Voter
Turnout in the August 2006 Primary Election

Model Specifications

(a) (b) (c)
Civic Duty Treatment (Robust cluster standard errors) .018* (.003) .018* (.003) .018* (.003)
Hawthorne Treatment (Robust cluster standard errors) .026* (.003) .026* (.003) .025* (.003)
Self-Treatment (Robust cluster standard errors) .049* (.003) .049* (.003) .048* (.003)
Neighbors Treatment (Robust cluster standard errors) .081* (.003) .082* (.003) .081* (.003)
N of individuals 344,084 344,084 344,084
Covariates** No No Yes
Block-level fixed effects No Yes Yes

Note: Blocks refer to clusters of neighboring voters within which random assignment occurred. Robust cluster standard
errors account for the clustering of individuals within household, which was the unit of random assignment.

*p < .001.

** Covariates are dummy variables for voting in general elections in November 2002 and 2000, primary elections in
August 2004, 2002, and 2000.

114 /181



Example: Job Training Partnership Act (JTPA)

Largest randomized training evaluation ever undertaken in the U.S.;
started in 1983 at 649 sites throughout the country

Sample: Disadvantaged persons in the labor market (previously
unemployed or low earnings)

D: Assignment to one of three general service strategies
e classroom training in occupational skills
o on-the-job training and/or job search assistance
e other services (eg. probationary employment)

Y: Earnings 30 months following assignment

e X: Characteristics measured before assignment (age, gender, previous
earnings, race, etc.)
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Random Assignment Model for JTPA Experiment

Eligibility

Determination

Assessment

Service Strategy
Recommendation

[ | ]

Classroom Other
. OJT/JSA .
Training _ Subgroup Services
Subgroup - . Subgroup

Control

Tmatmanl Cun{rol Trealmenl
Group

Group Group
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Means and Standard Deviations for JTPA Experiment
B. Women

Number of observations
Treatment
Training

QOutcome variable

30 month earnings

Baseline Characteristics

Age

High school or GED
Married

Black

Hispanic

4,088

.66
[47]

13,439
[13,614]

33.33
[9.77]
73
[.43]
22
[.40]
27
[.44]
12
[.32]

2,014

.02
[-13]

12,197
[12,964

33.35
(9.81]
70
[.44]
21
[.39]
26
[.44]
.12
.33]
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Subgroup Effects for JTPA Experiment

Exhibit 5 Impacts on Total 30-Monsh Earnings: Assignees and Enrollees, by Target

Group
Mean earnings Impact per assignee
Treamment  Consrol Asa  Impact per
group group In dollars  percent  enrollee in
. (1) 12) 3) JSR) dollars
Adult women $ 13,417 § 12,241 $1,176%**  9.6% § 1,837***
Adult mea 19,474 18,496 978* 53 1,599+
Female youths 10,241 10,106 135 1.3 210
Male youth nop-arrestees 15,786 16,375 589 3.6 -868
Male youth arrestees .
Using survey data 14,633 18,842 -4,209%*  .223 -6,804%*
Using scaled Ul 14,148 14,152 -4 0.0 -5

data
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A Word about Policy Implications

After the results of the National JTPA study were released, in 1994,
funding for JTPA training for the youth were drastically cut:

SPENDING ON JTPA PROGRAMS

Year Youth Training Adult Training

Grants Grants
1993 677 1015
1994 609 088
1995 127 996
1996 127 850

1997 127 895
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@ Further Issues in Experimental Design
@ Blocking
@ Power Calculations

@ Threats to Validity and Ethics
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Considerations for Experimental Designs

@ Unit of analysis and unit of randomization (individuals, groups,
institutions, etc)?
o Choice of analytic level determines what the study has the capacity to
demonstrate.
o Example: randomize school vouchers at the level of the individual or at

the level of the community? Do we want to know how students
respond to new environment or or how schools respond to competition?

o Can also help with SUTVA (e.g. interactions within and between
schools)
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Considerations for Experimental Designs

@ Unit of analysis and unit of randomization (individuals, groups,
institutions, etc)?

o Choice of analytic level determines what the study has the capacity to
demonstrate.

o Example: randomize school vouchers at the level of the individual or at
the level of the community? Do we want to know how students
respond to new environment or or how schools respond to competition?

o Can also help with SUTVA (e.g. interactions within and between
schools)

How many treatments?
How many units?

How many treated and how many controls?
Is background information available? If so, how can it be used?
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@ Further Issues in Experimental Design

@ Blocking
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Blocking

@ Imagine you have data on the units that you are about to randomly
assign. Why leave it to “pure” chance to balance the observed
characteristics?

@ ldea in blocking is to pre-stratify the sample and then to randomize
separately within each stratum to ensure that the groups start out
with identical observable characteristics on the blocked factors.

@ You effectively run a separate experiment within each stratum,
randomization will balance the unobserved attributes

o Why is this helpful?

e Four subjects with pre-treatment outcomes of {2,2,8,8}
o Divided evenly into treatment and control groups and treatment effect
is zero

e Simple random assignment will place {2,2} and {8,8} together in the
same treatment or control group 1/3 of the time
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Blocking

Imagine you run an experiment where you block on gender. It's possible to
think about an ATE composed of two seperate block-specific ATEs:
N¢ n N,
T = — - T —_— .
N¢ + Np, f N¢ + Np,

Tm
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Blocking

Imagine you run an experiment where you block on gender. It's possible to
think about an ATE composed of two seperate block-specific ATEs:

N¢ n N,
T=——— T+ — T
Ne+ N T Ne+ Ny 7
An unbiased estimator for this quantity will be
N Nf A4 Nm A
TR —= ———— -+ T, —_— T,
5 Nf + Nm f Nf + Nm "
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Blocking

Imagine you run an experiment where you block on gender. It's possible to
think about an ATE composed of two seperate block-specific ATEs:

N, N,
f oy M

~ Nf+ N, N + N,

An unbiased estimator for this quantity will be

A Nt A4 N
7—B_Nf‘i'/\lm i Nf+Nm

“Tm

or more generally, if there are J strata or blocks, then

2|2
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Blocking

Because the randomizations in each block are independent, the variance of
the blocking estimator is simply (Var(aX + bY) = a?Var(X) + b?Var(Y)):

. Ne N\’ . No \°o .
Var(7g) = Nt Var(7f) + NN Var(7m)
m m

or more generally
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Blocking with Regression

When analyzing a blocked randomized experiment with OLS and the probability
of receiving treatment is equal across blocks, then OLS with block “fixed effects”
will result in a valid estimator of the ATE:

J
y:':TDi‘i‘Zﬁj'B,'j‘i‘E,'

j=2

where B; is a dummy for the j-th block (one omitted as reference category).
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Blocking with Regression

When analyzing a blocked randomized experiment with OLS and the probability
of receiving treatment is equal across blocks, then OLS with block “fixed effects”
will result in a valid estimator of the ATE:

J
y:':TDi‘i‘Zﬁj'B,'j‘i‘E,'

j=2

where B; is a dummy for the j-th block (one omitted as reference category).

If probabilites of treatment, p;j = P(Dj; = 1), vary by block, then weight each

observation: ) )
wi=|— | D+ ( ) 1-D;
’ (Pij) 1— pj ( )
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Blocking with Regression

When analyzing a blocked randomized experiment with OLS and the probability
of receiving treatment is equal across blocks, then OLS with block “fixed effects”
will result in a valid estimator of the ATE:

J
y:':TDi‘i‘ZBj'B,'j‘i‘E,'

j=2

where B; is a dummy for the j-th block (one omitted as reference category).

If probabilites of treatment, p;j = P(Dj; = 1), vary by block, then weight each

observation: ) )
Wi = —_— D,‘ + < ) 1-— D,'
’ (Pij> 1 — pjy ( )

Why do this? When treatment probabilities vary by block, then OLS will weight
blocks by the variance of the treatment variable in each block. Without
correcting for this, OLS will result in biased estimates of ATE!
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When Does Blocking Help?

Imagine a model for a complete and blocked randomized design:

Yi = a+7erDi+e
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When Does Blocking Help?

Imagine a model for a complete and blocked randomized design:

Yi = a+7crDi+¢; (1)
J

Y, = Oé-i-TBRD,'—FZﬁJ'B,j—FET (2)
=

where B; is a dummy for the j-th block. Then given iid sampling:
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When Does Blocking Help?

Imagine a model for a complete and blocked randomized design:

Yi = a+7crDi+¢; (1)
J

Y, = Oé-i-TBRD,'—FZﬂJ'B,j—FET (2)
=

where B; is a dummy for the j-th block. Then given iid sampling:

2
o P
£ with 52 =

Var[7cr] —Zle(Di ~ by
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When Does Blocking Help?

Imagine a model for a complete and blocked randomized design:

Yi = a+7crDi+¢; (1)
J

Y, = Oé-i-TB,A:\’D,'—|—Z[’3J'B,'j—|-€:-k (2)
=

where B; is a dummy for the j-th block. Then given iid sampling:

~ o2 o T8  SSR-
Var[Tcr] —Zn (DE ~ by with 52 = 2'7::12 == ;
i=1 !
o2 Y7, & SSRs
Var|7; = ith 5.2 = ==171_ — =
I SN (o R R G
where Rf
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When Does Blocking Help?

Imagine a model for a complete and blocked randomized design:

Yi = a+7crDi+¢; (1)
J

Y, = Oé-i-TB,A:\’D,'—|—Zﬂj8ij—|—€:~k (2)
=

where B; is a dummy for the j-th block. Then given iid sampling:

2

- _ S 7.8 SSRe
el = smoeor MM T G2 T
o2 Y7, & SSRs
Var[7er] = = ith 5.2 = ==171_ — =
RS > I ) (o) I S B R

where F\’j2 is R? from regression of D on all B; variables and a constant.
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When Does Blocking Help?

Y = a+71crDi+¢; (3)
J

Yi = 04—|—7'BRD,'-l-z:,ﬁ’jB,'j—i-E}k (4)
=2

where By is a dummy for the k-th block. Then given iid sampling:

o’ S E SSR-
VI7, - s ith ~2 _ i=1%i _ 2
[TCR] Z?:l(Di _ D)2 with o —n ) p—
o " & SSR-
ViTer] = = ith 5.2 = 2wi=15 _ 9oRa
[TBR] Z;]:l(Di_ D)2(1_ F\>J2) Wi O¢ n_k_]_ n_k_l

where R? is R? from regression of D on the B, dummies and a constant.

So when is Var[Tgr] < Var[Tcr]?
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When Does Blocking Help?

Y = a+7crD;i+¢e; (5)
J

Yi = a+7erDi+ Y BiBj+e] (6)
j=2

where By is a dummy for the k-th block. Then given iid sampling:

o2 Y18 SSR-
VIE _ € _ ith ~2 — i=1%i _ €
Ferl = srp—Bp M7 n2 n-2
o2 ".E  SSR
VIF _ e ith A€*2 — i=1%i e*
[7er] STD—DRa—R) 7 T k-1 k-1

where R-2 is R? from regression of D on the B, dummies and a constant.

Since R2 ~ 0 V[7gr] < V[7cr] if 2R ne k 7 < %
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Example: Fair Trade Labeling Experiment

Label Experiment

Treatment Control

FAIR TRADE

CERTIFIED
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Example: Fair Trade Labeling Experiment
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Example: Fair Trade Labeling Experiment

Matched Pairs: Phase 1

Andover Portland
° (]
ME
.Bedfo(d Woburn
) - =
Meford
. - y
Cambridge i
Wsgtand idg: Baston | Providence
Framingham® Newm"Brig.hlon. Cranston
. . ° .
Wellesley RI
- Hingham .
.
MA ) y ‘Hadley ¥
.Bellingham Bty Glastonbury
o FTLabel et West Harford :
e Control Label Sz
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Example: Fair Trade Labeling Experiment

R Code

> d <- read.dta("FTdata.dta")
> head(d)

store pair FTweek lnsalesd
1 1 1 1 3.20
2 4 1 0 2.77
3 6 2 1 4.18
4 9 2 0 4.04
5 21 3 1 4.30
6 24 3 0 3.93
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Example: Fair Trade Labeling Experim

R Code
> cr.out <- 1lm(lnsalesd"FTweek,data=d)
> coeftest(cr.out,vcov = vcovHC(cr.out, type = "HC1"))

t test of coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.35000 0.16079 27.0537 <2e-16 *xx*
FTweek 0.12385 0.21424 0.5781 0.5686
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Example: Fair Trade Labeling Experim

R Code

> br.out <- lm(lnsalesd"FTweek+as.factor(pair),data=d)
> coeftest(br.out,vcov = vcovHC(br.out, type = "HC1i"))
t test of coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.923077 0.162144 18.0277 4.671e-10 **x*
FTweek 0.123846  0.060176 2.0581 0.0619840 .
as.factor(pair)2 1.125000 0.159549 7.0511 1.335e-05 ***
as.factor(pair)3 1.130000 0.204440 5.5273 0.0001304 *x**
as.factor(pair)4 1.145000 0.231925 4.9369 0.0003439 *x**
as.factor(pair)5 1.280000 0.161773 7.9123 4.208e-06 ***
as.factor(pair)6 1.410000 0.169987 8.2948 2.591e-06 *x**
as.factor(pair)7 1.575000 0.203689 7.7324 5.317e-06 *x**
as.factor(pair)8 1.585000 0.277319 5.7154 9.675e-05 ***
as.factor(pair)9 1.610000 0.169987 9.4713 6.420e-07 *x**
as.factor(pair)10 1.795000 0.165195 10.8660 1.450e-07 ***
as.factor(pair)11l 1.810000 0.169987 10.6479 1.810e-07 *x*x
as.factor(pair)12 2.015000 0.164183 12.2729 3.763e-08 *x**
as.factor(pair)13 2.070000 0.160298 12.9134 2.127e-08 ***
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Example: Fair Trade Labeling Experiment
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Example: Fair Trade Labeling Experim

R Code

> summary(lm(lnsalesd”as.factor(pair) ,data=d))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9850 0.1212 24.621 2.72e-12 *x*x*
as.factor(pair)2 1.1250 0.1715  6.562 1.82e-05 *x*x*
as.factor(pair)3 1.1300 0.1715  6.591 1.74e-05 *xx
as.factor(pair)4 1.1450 0.1715  6.678 1.52e-05 *x*x*
as.factor(pair)5b 1.2800 0.1715  7.466 4.73e-06 *x**
as.factor(pair)6 1.4100 0.1715  8.224 1.65e-06 *xx
as.factor(pair)7 1.5750 0.1715  9.186 4.77e-07 ***
as.factor(pair)8 1.5850 0.1715  9.245 4.44e-07 **x*
as.factor(pair)9 1.6100 0.1715  9.390 3.71e-07 *xx
as.factor(pair)10 1.7950 0.1715 10.469 1.05e-07 *x**
as.factor(pair)1l  1.8100 0.1715 10.557 9.56e-08 *x**
as.factor(pair)12 2.0150 0.1715 11.752 2.68e-08 *x*x*
as.factor(pair)13 2.0700 0.1715 12.073 1.94e-08 xx**
Residual standard error: 0.1715 on 13 degrees of freedom
Multiple R-squared: 0.9474, Adjusted R-squared: 0.8988
F-statistic: 19.5 on 12 and 13 DF, p-value: 2.356e-06
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Blocking

@ How does blocking help?

o Increases efficiency if the blocking variables predict outcomes (i.e. they
“remove” the variation that is driven by nuisance factors)

e Blocking on irrelevant predictors can burn up degrees of freedom

e Can help with small sample bias due to “bad” randomization

o Is powerful especially in small to medium sized samples
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Blocking

@ How does blocking help?

o Increases efficiency if the blocking variables predict outcomes (i.e. they
“remove” the variation that is driven by nuisance factors)

e Blocking on irrelevant predictors can burn up degrees of freedom

e Can help with small sample bias due to “bad” randomization

o Is powerful especially in small to medium sized samples

@ What to block on?

e “Block what you can, randomize what you can't”
e The baseline of the outcome variable and other main predictors
e Variables desired for subgroup analysis

@ How to block?

e Stratification
o Pair-matching
o Check: blockTools library
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Analysis with Blocking

e “As ye randomize, so shall ye analyze” (Senn 2004): Need to
account for the method of randomization when performing statistical

analysis.
o If using OLS, strata dummies should be included when analyzing

results of stratified randomization.

o If probability of treatment assignment varies across blocks, then weight
treated units by probability of being in treatment and controls by the
probability of being a control.

o Failure to control for the method of randomization can result in
incorrect test size.
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@ Further Issues in Experimental Design

@ Power Calculations
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Relative Sample Sized for Fixed N

If sample sizes are large enough, we can approximate

B _ 02 o2
Vi~ Vo o N1y — 1. ZL 4 %0
1 0 (Ml o, Ny + No)

Problem

Choose N; and Ny, such that Ny + Ng = N, to minimize the variance of
the estimator of the average treatment effect.

Recall that the variance of Y1 — Yy is approximately:

= — 0'2 0'2
var(V1 — Vo) = & + — %
A =10 pN — (1—p)N

where p = N1 /N is the proportion of treated in the sample.
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Relative Sample Sized for Fixed N

Find the value p* that makes the derivative with respect to p equal to zero:

2 2
01 )

T p2N + (1—p*)2N =0

Therefore: .

1—p 00

p* o1

i

and
X o1 1

“o1+00 1+ao/or
A “rule of thumb” for the case o1 ~ g9 is px = 0.5

For practical reasons it is sometimes better to choose unequal sample sizes
(even if o1 = 0g). Note: precision erodes slowly until the degree of
imbalance becomes extreme (p < .2 or p > .8), so there is latitude for
using an unbalanced allocation.
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Variance of ATE as Function of p

Imagine: 03 =03 =1, N = 100

Variance (Y1bar - YObar)
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Experimental Design: Power calculations to choose N

@ Recall that for a statistical test:

o Type | error: Rejecting the null if the null is true («)

o Type Il error: Not rejecting the null if the null is false (V)

@ Size of a test is the probability of type | error. Usually 0.05

@ Power of a test is one minus the probability of type Il error, i.e. the
probability of rejecting the null if the null is false

@ What does power depend on?

154 /181



Experimental Design: Power calculations to choose N

@ Recall that for a statistical test:

o Type | error: Rejecting the null if the null is true («)

o Type Il error: Not rejecting the null if the null is false (V)

@ Size of a test is the probability of type | error. Usually 0.05

@ Power of a test is one minus the probability of type Il error, i.e. the
probability of rejecting the null if the null is false

@ What does power depend on?

True size of the effect (0)

Sample size and proportion of treated (N and p)
Variability of outcomes (o)

Desired a level

Test statistic

Number of treatments
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Power calculations with equal and known variances

Suppose that Yy ~ (uo, ag =02 and Y] ~ (p1, cr% = 52). Assume also that p = 0.5, so Ng = Ny = N/2. Let
8 = p1 — po. Then, for the t-statistic of equality of means:

Yi—-Yy—96
1= 00 UN@,1)
ot %
N1 No
Therefore:
Y1 —Yo—6 Yi— Yo 5
2 2 - 2 - 2 2
91 n % 91 i % 91 , %
N1 No N1 No N1 No
Vi — Yo 5
\/0% 05 202 202
N1 No N N
_ i — Yo 5
2 o2 20/VN
N N
Yi— Yo 5vN
a% Ug 20
N1 No
Therefore:
Yi - Y 5vN
t = ~ N ,1
0—% O'S 20
N1 No
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Power calculations with equal and known variances

The power, i.e. Pr(reject ug — po = 0|lp1 — po = 9) is:

Pr(lt] >1.96) = Pr(t< —1.96)+ Pr(t > 1.96)
= Pr <t—M —196—M>

Pr <t—£ 196—£>

ol ) ol )
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Power functions for N = 25, N = 50, and 0% =1

0.8} \ / N=25 B
07k : ! 4

0.6 \

0.4 \ '
0.3 | ' 4
0.2 \ ! 4

0.1r- \ ’

Note: increasing sample size has a diminishing return for precision.
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General formula for the power function (p # 0.5, 03 # 0%)

Pr (reject pu1 — pio = Olpx — pio = 9)

==
e/ )

© §: minimum detectable effect magnitude

To choose N we need to specify:

@ Power value (usually 0.80 or higher)
@ o0? and 03 (usually 02 = 03) (e.g. using previous measures)

@ p: proportion of observations in the treatment group (if o1 = gg, then the
power is maximized by p = 0.5)
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Formula for Minimum Detectable Effect

Assume 02 = 02 = 02, we can solve for the minimum detectable effect:

o2

Np(1 - p)

where M, _» = t(1_n/2) + ti—y is called the multiplier

MDE(5) = My_»

@ t(1_q/2): critical t-value to reject the null (two-tailed)

@ t;_y: t-value for t-distribution of the alternative. Depends on desired power
(1 — W) where W is Pr(type Il error)

@ E.g. for a two-tailed test with .80 power and df > 20 we have approximatly
Mp_> = tgors +to> =196+ .84 =2.8

We can also consider the standardized mean difference effect size ES which is
ES = g and the minimum detectable effect is thus

1

MDES(6) = M,_54 | ———
0= Mo\ | ot = p)
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Minimum Detectable Effect

Example: Standard deviation is $500 dollars, and average earnings are $2,500
dollars. Here is what we can expect to detect for a given sample size and power.

MDE MDES N SD Sig Po meanY MDE/Mean

88.68 0.18 1000 500 0.05 0.8 2500 3.55
125.54 0.25 500 500 0.05 0.8 2500 5.02
282.98 0.57 100 500 0.05 0.8 2500 11.32
404.44 0.81 50 500 0.05 0.8 2500 16.18
585.24 1.17 25 500 0.05 0.8 2500 23.41

@ What is the target minimum ES?
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Minimum Detectable Effect

Example: Standard deviation is $500 dollars, and average earnings are $2,500
dollars. Here is what we can expect to detect for a given sample size and power.

MDE MDES N SD Sig Po meanY MDE/Mean

88.68 0.18 1000 500 0.05 0.8 2500 3.55
125.54 0.25 500 500 0.05 0.8 2500 5.02
282.98 0.57 100 500 0.05 0.8 2500 11.32
404.44 0.81 50 500 0.05 0.8 2500 16.18
585.24 1.17 25 500 0.05 0.8 2500 23.41

@ What is the target minimum ES? Depends on what the benchmark is
(theoretical expectations, intervention costs, etc.)

@ Popular benchmark for gauging standardized ES is Cohen's (1977)
prescription (based on little empirical evidence) that values of 0.20, 0.50,
and 0.80 be considered small, moderate, and large.
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Power Analysis with Blocking

Assuming 62 = o2 = o2, we can solve for the minimum detectable effect:
1 0

MDES(3cr) = My, /m (7)

1-R2 (8)

MDES((SBR) = Mn—k—l m

@ M,_, and M,_,_1 are the multipliers

@ R2 is the proportion of explained variation in the outcome predicted by the
blocks (Regress Y on B; dummies)

e The more similar observations are within blocks and the more different
blocks are from each other, the higher this predictive power is and the
larger the precision gain from blocking.
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Power Analysis with Blocking

MDE MDES N SD Sig Po meanY MDE/Mean R

14.52 036 26 40 0.05 0.8 90 16.13 0.9
20.53 051 26 40 0.05 0.8 90 22.81 0.8
25.15 0.63 26 40 0.05 0.8 90 27.94 0.7
29.04 0.73 26 40 0.05 0.8 90 3226 0.6
15.93 040 22 40 0.05 0.8 90 17.70 0.9
22.53 056 22 40 0.05 0.8 90 25.04 0.8
27.60 0.69 22 40 0.05 0.8 90 30.66 0.7

31.87 0.80 22 40 0.05 0.8 90 35.41 0.6
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Power Analysis with Blocking SD = 40

2 4 — N=20
—— N=50
— N=100

0.0 0.2 0.4 0.6 0.8
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@ Further Issues in Experimental Design

@ Threats to Validity and Ethics

167 /181



Threats to Internal and External Validity

@ Internal validity: can we estimate the treatment effect for our
particular sample?
o Fails when there are differences between treated and controls (other
than the treatment itself) that affect the outcome and that we cannot
control for

o External validity: can we extrapolate our estimates to other
populations?
o Fails when outside the experimental environment the treatment has a
different effect
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Most Common Threats to Internal Validity

@ Failure of randomization

o E.g. implementing partners assign their favorites to treatment group,
small samples, etc.
e JTPA: Good balance

@ Non-compliance with experimental protocol

e Failure to treat or “crossover’: Some members of the control group
receive the treatment and some in the treatment group go untreated
e Can reduce power significantly
o JTPA: only about 65% of those assigned to treatment actually enrolled
in training (compliance was almost perfect in the control group)

@ Attrition

o Can destroy validity if observed potential outcomes are not
representative of all potential outcomes even with randomization
e E.g. control group subjects are more likely to drop out of a study
o JTPA: only 3 percent dropped out

@ Spillovers
e Should be dealt with in the design
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Most Common Threats to External Validity

@ Non-representative sample

o E.g. laboratory versus field experimentation

e Subjects are not the same population that will be subject to the policy,
known as “randomization bias”

@ Non-representative program
e The treatment differs in actual implementations

o Scale effects

o Actual implementations are not randomized (nor full scale)
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External Validity? Experimental Sites versus all Sites

Exhibit 3.3 SELECTED ECONOMIC CONDITIONS AT 16 STUDY SITES

Percentage Annual

employed in  growth in

Mean manufacturing, retail and

unemployment  Mean mining, or wholesale

rate, earnings, agriculture, earnings,
1987-89 1987 1988 1989

Site (1) (2) (3) (4)

Fort Wayne, Ind. 4.7% $18,700 33.3% —-0.1%
Coosa Valley, Ga. 6.5 16,000 42.8 2.1
Corpus Christi, Tex. 10.2 18,700 16.8 -15.5
Jackson, Miss. 6.1 17,600 12.8 —2.4
Providence, R.I. 3.8 17,900 28.0 9.7
Springfield, Mo. 5.5 15,800 19.4 -1.8
Jersey City, N.J. 7.3 21,400 20.9 9.9
- Marion, Ohio 7.0 18,600 37.7 1.7
* Oakland, Calif. 6.8 23,000 14.6 3.0
Omaha, Neb. 4.3 18,400 11.8 1.8
. Larimer County, Colo. 6.5 17,800 21.2 -3.1
Heartland, Fla. 8.5 15,700 23.8 -0.3
Northwest Minnesota 8.0 14,100 23.0 2.4
Butte, Mont. 6.8 16,900 9.6 —5.7
- Decatur, I11. 9.2 21,100 27.1 -1.1
" Cedar Rapids, lowa 3.6 17,900 21.9 —-0.5
16-site average 6.6 18,100 22.8 0.0
National average, all SDAs 6.6 18,167 23.4 1.5

Source: Unweighted annual averages calculated from JTPA Annual Status Report com-
puter files produced by U.S. Department of Labor. ,
Note: Missing data for certain measures precluded using same year across columns. 171 /181



Internal vs. External Validity

Which one is more important?

One common view is that internal validity comes first. If you
do not know the effects of the treatment on the units in your
study, you are not well-positioned to infer the effects on units
you did not study who live in circumstances you did not
study. (Rosenbaum 2010, p. 56)

Randomization addresses internal validity. External validity is often
addressed by comparing the results of several internally valid studies
conducted in different circumstances and at different times.

The same issues apply in observation studies.
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Hardwork is in the Design and Implementation

@ Statistics are often easy; the implementation and design are often
hard.

@ Find partners, manage relationships, identify learning opportunities.
@ Designing experiments so that they are incentive-compatible:

o Free “consulting”

o Allocating limited resources (e.g. excessively large target groups)

e Phased randomization as a way to mitigate ethical concerns with denial

of treatment

o Encouragement designs

o Monitoring
@ Potentially high costs.
@ Many things can go wrong with complex and large scale experiments.
o Keep it simple in the field!
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Ethics and Experimentation

@ Fearon, Humphreys, and Weinstein (2009) used a field experiment to
examine if community-driven reconstruction programs foster social
reconciliation in post-conflict Liberian villages.

@ Outcome: funding raised for collective projects in public goods game played
with 24 villagers. Total payout to village is publicly announced.
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Ethics and Experimentation

@ Fearon, Humphreys, and Weinstein (2009) used a field experiment to
examine if community-driven reconstruction programs foster social
reconciliation in post-conflict Liberian villages.

@ Outcome: funding raised for collective projects in public goods game played
with 24 villagers. Total payout to village is publicly announced.

We received a report that leaders in one community had gathered
villagers together after we left and asked people to report how much
they had contributed. We moved quickly to prevent any retribution
in that village, but also decided to alter the protocol for subsequent
games to ensure greater protection for game participants.
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Ethics and Experimentation

@ Fearon, Humphreys, and Weinstein (2009) used a field experiment to
examine if community-driven reconstruction programs foster social
reconciliation in post-conflict Liberian villages.

@ Outcome: funding raised for collective projects in public goods game played
with 24 villagers. Total payout to village is publicly announced.

We received a report that leaders in one community had gathered
villagers together after we left and asked people to report how much
they had contributed. We moved quickly to prevent any retribution
in that village, but also decided to alter the protocol for subsequent
games to ensure greater protection for game participants.

These changes included stronger language about the importance of
protecting anonymity, random audits of community behavior,
facilitation of anonymous reporting of violations of game protocol by
participants, and a new opportunity to receive supplemental funds
in a postproject lottery if no reports of harassment were received.
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Ethics and Experimentation

@ Respect for persons: Participants in most circumstances must give
informed consent.

e Informed consent often done as part of the baseline survey.
o If risks are minimal and consent will undermine the study, then
informed consent rules can be waived.
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Ethics and Experimentation

@ Respect for persons: Participants in most circumstances must give
informed consent.

e Informed consent often done as part of the baseline survey.
o If risks are minimal and consent will undermine the study, then
informed consent rules can be waived.

@ Beneficence: Avoid knowingly doing harm. Does not mean that all risk can
be eliminated, but possible risks must be balanced against overall benefits to
society of the research.

o Note that the existence of a control group might be construed as
denying access to some benefit.

e But without a control group, generating reliable knowledge about the
efficacy of the intervention may be impossible.
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Ethics and Experimentation

@ Respect for persons: Participants in most circumstances must give
informed consent.

e Informed consent often done as part of the baseline survey.
o If risks are minimal and consent will undermine the study, then
informed consent rules can be waived.

@ Beneficence: Avoid knowingly doing harm. Does not mean that all risk can
be eliminated, but possible risks must be balanced against overall benefits to
society of the research.

o Note that the existence of a control group might be construed as
denying access to some benefit.

e But without a control group, generating reliable knowledge about the
efficacy of the intervention may be impossible.

@ Justice: Important to avoid situations where one group disproportionately
bears the risks and another stands to received all the benefits.

e Evaluate interventions that are relevant to the subject population
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Ethics and Experimentation

@ IRB approval is required in almost all circumstances.

@ If running an experiment in another country, you need to follow the local
regulations on experimental research.

e Often poorly adapted to social science.
e Or legally murky whether or not approval is required.

@ Still many unanswered questions and lack of consensus on the ethics of field
experimentation within Political Science!

o Be prepared to confront wildly varying opinons on these issues.
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Conclusion: Experiments

@ Random assignment solves the identification problem for causal
inference based on minimal assumptions that we can control as
researchers

@ Random assignment balances observed and unobserved confounders,
which is why it is considered the gold standard for causal inference

@ Statistical analysis is simple, transparent, and results are typically not
model dependent, since confounders are controlled for “by design”

@ Design features can help to improve inferences

@ Always important to think about theory and external validity prior to
experimentation
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