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Abstract 
Applied research conditions often make it impossible to point-
identify causal estimands without untenable assumptions. 
Partial identification—bounds on the range of possible 
solutions—is a principled alternative, but the difficulty of 
deriving bounds in idiosyncratic settings has restricted their 
application. We present a general, automated numerical 
approach to causal inference in discrete settings. We show 
causal questions with discrete data reduce to polynomial 
programming problems, then present an algorithm to 
automatically bound causal effects using efficient dual 
relaxation and spatial branch-and-bound techniques. The user 
declares an estimand, states assumptions, and provides 
data—however incomplete or mismeasured. The algorithm 
then searches over admissible data-generating processes and 
outputs the most precise possible range consistent with 
available information—i.e., sharp bounds—including a point-
identified solution if one exists. Because this search can be 
computationally intensive, our procedure reports and 
continually refines non-sharp ranges guaranteed to contain 
the truth at all times, even when the algorithm is not run to 
completion. Moreover, it offers an ε-sharpness guarantee, 
characterizing the worst-case looseness of the incomplete 
bounds. These techniques are implemented in our Python 
package, autobounds. Analytically validated simulations show 
the method accommodates classic obstacles including 
confounding, selection, measurement error, noncompliance, 
and nonresponse. 

Keywords: causal inference, partial identification, constrained optimization, linear 

programming, polynomial programming 
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1 Introduction 

When causal quantities cannot be point identified, researchers often pursue partial 

identification to quantify the range of possible answers. These solutions are tailored 

to specific settings (e.g. Lee, 2009; Sjölander et al., 2014; Kennedy 

et al., 2019; Knox et al., 2020; Gabriel et al., 2022), but the idiosyncrasies of applied 

research can render prior results unusable if even slightly differing scenarios are 

encountered. This piecemeal approach to deriving causal bounds presents a major 

obstacle to scientific progress. To increase the pace of discovery, researchers need 

a more general solution. 

In this paper, we present an automated approach to causal inference in discrete 

settings which applies to all causal graphs, as well as all standard observed 

quantities and domain assumptions. Users declare an estimand, state assumptions, 

and provide available data—however incomplete or mismeasured. The algorithm 

numerically computes sharp bounds, the most precise possible answer to the causal 

query given these inputs, including a unique point estimate if one exists. Our 

approach accommodates any classic threat to inference, including missing data, 

selection, measurement error, and noncompliance. It can fuse information from 

numerous sources—including observational and experimental data, datasets that are 

unlinkable due to anonymization, or even summary statistics from other studies. The 

method allows for sensitivity analyses on any assumption by relaxing or removing it 

entirely. Moreover, it alerts users when assumptions conflict with observed data, 

indicating faulty causal theory. We also develop techniques for drawing statistical 

inferences about estimated bounds. We implement these methods in a Python 

package, autobounds, and demonstrate them with a host of analytically validated 

simulations. 

Our work advances a rich literature on partial identification in causal inference 

(Manski, 1990; Zhang and Rubin, 2003; Cai et al., 2008; Swanson 

et al., 2018; Gabriel et al., 2022; Molinari, 2020), outlined in Section 2, which has 

sometimes cast partial identification as a constrained optimization problem. In 

pioneering work, Balke and Pearl (1997) provided an automatic sharp bounding 

method for causal queries that can be expressed as linear programming problems. 
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However, numerous estimands and empirical obstacles do not fit this description, 

and a complete and feasible computational solution has remained elusive. 

When feasible, sharp bounding represents a principled and transparent method that 

makes maximum use of available data while acknowledging its limitations. Claims 

outside the bounds can be immediately rejected, and claims inside the bounds must 

be explicitly justified by additional assumptions or new data. But several obstacles 

still preclude widespread use. For one, analytic bounds—which can be derived once 

and then applied repeatedly, unlike our numerical bounds which must be 

recomputed each time—remain intractable for many problems. Within the subclass 

of linear problems, Balke and Pearl’s (1997) simplex method offers an efficient 

analytic approach, but analytic nonlinear solutions are still derived case by case 

(e.g. Kennedy et al., 2019; Knox et al., 2020; Gabriel et al., 2022). Moreover, though 

general sharp bounds can in theory be obtained by standard nonlinear optimization 

techniques (Geiger and Meek, 1999; Zhang and Bareinboim, 2021), in practice, such 

approaches are often computationally infeasible. This is because without 

exhaustively exploring a vast model space to avoid local optima, they can 

inadvertently report invalid bounds that may fail to contain the truth. 

To address these limitations, we first show in Sections 3–4 that—using a 

generalization of principal strata (Frangakis and Rubin, 2002)—causal estimands, 

modeling assumptions, and observed information can be rewritten as polynomial 

objective functions and polynomial constraints with no loss of information. We extend 

results from Geiger and Meek (1999) and Wolfe et al. (2019) to show that essentially 

all discrete partial identification problems reduce to polynomial programs, a well-

studied class of optimization tasks that nest linear programming as a special case.1 

However, it is well known that solving polynomial programs to global optimality is in 

general NP-hard, highlighting the need for efficient bounding techniques that remain 

valid even under time constraints (Belotti et al., 2009; Vigerske and Gleixner, 2018). 

To ameliorate these computational difficulties, Section 4.2 shows how causal graphs 

can be restated as equivalent canonical models, further simplifying the polynomial 

program. Next, Section 5 develops an efficient optimization procedure, based on 

dual relaxation and spatial branch-and-bound relaxation techniques, that provides 
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bounds of arbitrary sharpness. We show this procedure is guaranteed to achieve 

complete sharpness with sufficient computation time; in the problems we examine 

here, this occurs in a matter of seconds. However, in cases where the time needed 

is prohibitive, our algorithm is anytime (Dean and Boddy, 1988), meaning it can be 

interrupted to obtain non-sharp bounds that are nonetheless guaranteed to be valid. 

Crucially, our technique offers an additional guarantee we term “ε-sharpness,” a 

worst-case looseness factor that quantifies how much the current non-sharp bounds 

could potentially be improved with additional computation. In Section 6, we provide 

two approaches for characterizing uncertainty in the estimated bounds. We 

demonstrate our technique in a series of analytically validated simulations in 

Section 7, showing the flexibility of our approach and the ease with which 

assumptions can be modularly imposed or relaxed. Moreover, we demonstrate how 

it can improve over widely used bounds (Manski, 1990) and recover a 

counterintuitive point-identification result in the literature on nonrandom missingness 

(Miao et al., 2016). 

In short, our approach offers a complete and computationally feasible approach to 

causal inference in discrete settings. Given a well-defined causal query, valid 

assumptions, and data, researchers now have a general and automated process to 

draw causal inferences that are guaranteed to be valid and, with sufficient 

computation time, provably optimal. 

2 Related literature 

Researchers have long sought to automate partial identification by recasting causal 

bounding problems as constrained optimization problems that can be solved 

computationally. Our work is most closely related to Balke and Pearl (1997), which 

showed that certain bounding problems in discrete settings—generally, when 

interventions and outcomes are fully observed—could be formulated as the 

minimization and maximization of a linear objective function subject to linear equality 

and inequality constraints. Such programming problems admit both symbolic 

solutions and highly efficient numerical solutions. Subsequent studies have proven 

that the bounds produced by this technique are sharp 

(Bonet, 2001; Ramsahai, 2012; Sachs et al., 2020). These results were extended by 
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Geiger and Meek (1999), who showed that a much broader class of discrete 

problems can be formulated in terms of polynomial relations when analysts have 

precise information about the kinds of disturbances or confounders that may exist.2 

In addition to the well-known conditional independence constraints implied by d-

separation, these can include generalized equality constraints (Verma and 

Pearl, 1990; Tian and Pearl, 2002) and generalizations of the instrumental inequality 

constraints (Pearl, 1995; Bonet, 2001). 

Geiger and Meek (1999) note that in theory, quantifier elimination algorithms can 

provide symbolic bounds. However, the time required for quantifier elimination grows 

as a doubly exponential function of the number of parameters, rendering it infeasible 

for all but the simplest cases. At the core of this issue is that symbolic methods 

provide a general solution, meaning that they must explore the space of all possible 

inputs. In contrast, numerical methods such as ours can accelerate computation by 

eliminating irrelevant portions of the model space. 

Even so, computation can be time-consuming.3 In practice, many optimizers can 

rapidly find reasonably good values but cannot guarantee optimality without 

exhaustively searching the model space. This approach poses a challenge for 

obtaining causal bounds, which are global minimum and maximum values of the 

estimand across all models that are admissible, or consistent with observed data and 

modeling assumptions. If a local optimizer operates on the original problem (the 

primal), proceeding from the interior and widening bounds as more extreme models 

are discovered, then failing to reach global optimality will result in invalid bounds—

ranges narrower than the true sharp bounds, failing to contain all possible solutions. 

In the following sections, we detail our approach to addressing each of these 

outstanding obstacles to automating the discovery of sharp bounds for discrete 

causal problems. 

3 Preliminaries 

We now define notation and introduce key concepts. A technical glossary is given in 

Appendix A. We first review how any causal model represented by a directed acyclic 

graph (DAG) can be “canonicalized,” or reduced into simpler form, without loss of 
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generality (w.l.o.g.; Evans, 2016). We describe how these graphs give rise to 

potential outcomes and a generalization of principal strata (Frangakis and 

Rubin, 2002), two key building blocks in our analytic strategy. 

We follow the convention that bold letters denote collections of variables; uppercase 

and lowercase letters denote random variables and their realizations, respectively. 

Consider a structured system in which random vectors 
1

{ , , }
J

V V V  represent 

observable main variables and 
1

{ , , }
K

U U U  represent unobserved disturbances. 

We will assume each observed variable Vj is discrete and its space ( )
j

V  has finite 

cardinality; the spaces of unobserved variables are unrestricted. Observed data for 

each unit {1, , }i N   is an i.i.d. draw from V. Further suppose that causal 

relationships between all variables in V and U are represented by a nonparametric 

structural equation model with independent errors (NPSEM-IE, Pearl, 2000).4 Here, 

we concentrate on deriving results for the NPSEM-IE model, but our approach is 

also applicable to the model of Robins (1986) and Richardson and Robins (2013) 

without change.5 

Figure 1 presents a DAG  representing relationships between V U . Note that 

fully observing these variables would be sufficient to identify every quantity we 

consider in this paper. However, since disturbances U are unobserved, and since 

information about main variables V may be incomplete, partial identification 

techniques are needed. 

3.1 Canonical DAGs 

We now discuss how canonicalizing DAGs—reformulating them w.l.o.g. into a 

simpler form—simplifies the bounding task. A DAG is said to be in canonical form if 

(i) no disturbance Uk has a parent in ; and (ii) there exists no pair of disturbances, 

Uk and 
k

U

, such that Uk influences a subset of variables influenced by 

k
U


. 

Evans (2016) showed that any non-canonical DAG   has a canonical form  with 

an identical distribution governing all variables in V; an algorithm for obtaining this 

canonical form is given in Appendix B.1. In short, canonicalization distills the data-

generating process (DGP) to its simplest form by eliminating potentially complex 

networks of irrelevant disturbances. Figure 1 shows a non-canonical DAG in panel 
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(a); panel (b) gives the canonicalized version. Note that disturbances affecting only a 

single variable, such as U1, are often left implicit; here, we depict them explicitly for 

clarity. 

3.2 Potential outcomes 

The notation of potential outcome functions allows us to compactly express the 

effects of manipulating variable Vj’s main parents, ( )
j

V
V

p a , or other ancestors that 

are also main variables. Similarly, ( )
j

V
U

p a  denotes parents of Vj that are 

disturbances. Let A V  be intervention variables that will be fixed to A a . When 

 A , so no intervention occurs, then define ( )
j j

V Va , the natural value. When 

( )
j

V
V

A p a , so only immediate parents are manipulated, then the potential outcome 

function is given by its structural equation, ( ) , ( ) , ( )[ ]
j j j j

V f V V 
V U

a A a p a A p a . 

For example, in Figure 1(b), the effect of intervention V 2 = v2 on outcome V3 is 

defined in terms of 
3 2 2 3 2 2 1 2 3
( ) ( , , )V V v f V v V U   . Here, the intervention set is 

2
VA , 

and the remaining parents of V3—the non-intervened main parent, 
3 1

( )V V
V

pa A , 

and the disturbance parent, 
3 2 3

( )V U
U

pa —are allowed to follow their natural 

distributions. We now define more general potential outcome functions by recursive 

substitution (Richardson and Robins, 2013; Shpitser, 2018). For arbitrary 

interventions on A V , let ( ) { : ( )} { ( ) : ( ) }( )
j j j j j j

V V a V V V V
 

   
V V

a A p a a p a A ; 

here,  is a generic index that sweeps over main variables in the graph. That is, if a 

parent of Vj is in A, it is set to the corresponding value in a. Otherwise, the parent 

takes its potential value after intervention on causally prior variables, or its natural 

value otherwise. To obtain the parent’s potential value, apply the same definition 

recursively.6 For example, in Figure 1(b), potential outcomes for V3 include (i) 

3 3 1 2
( ) ( , )V V V V  , the observed distribution; (ii) 

3 1 3 1 2 1
( ) [ , ( )]V v V v V v , relating to total 

effects; and (iii) 
3 1 2
( , )V v v , relating to controlled effects. 

3.3 Generalized principal stratification 

In this section, we show how any DAG and any causal quantity can be represented 

w.l.o.g. using a generalization of principal strata. Roughly speaking, principal strata 

on a variable Vj are groups of units that would respond to counterfactual 

interventions in the same way (Greenland and Robins, 1986; Frangakis and 
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Rubin, 2002). Formally, let ( )
V j

VA p a  be an intervention set for which all main 

parents of Vj are jointly set to some a, and consider unit i’s collection of potential 

outcomes 
,

( ) : ( ){ }
i j

V  A a a A . Each principal stratum of Vj then represents a 

subset of units in which this collection is identical. 

The NPSEM of a graph is closely related to its principal stratification. This is because 

each potential outcome in the collection above is given by 

, ,
( ) [ , ( )]

i j j i j
V f V  

U
A a A a p a , in which the only source of random variation is unit i’

s realization of the relevant disturbances. After fixing these disturbances, all 

structural equations become deterministic, meaning that a realization of 
i

U  must fix 

every potential outcome for every variable under every intervention. For example, 

consider the simple DAG 
1 1 2 2
           U V V U   , in which V1 and V2 are binary. This 

relationship is governed by the structural equations 
1 1 1

( )V f U  and 
2 2 1 2

( , )V f V U , 

where the functions 
1 1 1

: ( ) ( )f U V  and 
2 1 2 2

: ( ) ( ) ( )f V U V   are deterministic 

and shared across all units. Thus, the only source of randomness is in 
1 2

{ , }U UU . 

Analysts generally do not have direct information about these disturbances. For 

example, U1 could potentially take on any value in ( , )  . However, as 

Proposition 1 will state in greater generality, this variation is irrelevant because V1 

has only two possible values: 0 and 1. The space of U1 can therefore be divided into 

two canonical partitions (Balke and Pearl, 1997)—those that deterministically lead to 

1
0V   and those that lead to 

1
1V  —and thus treating U1 as if it were binary is 

w.l.o.g. 

Strata for V2 are similar but more involved. After U2 is realized, it induces the partially 

applied response function 2
( )

2 2 1 2 2 2 1
( , ) ( )

u
V f V U u f V   , which deterministically 

governs how V2 counterfactually responds to V1. Regardless of how many are in 

2
( )U , this response function must fall into one of only four possible strata, each a 

mapping of the form 2
( )

2 1 2
: ( ) ( )

u
f V V  (Angrist et al., 1996). These groups are (i) 

2
1V   regardless of V1, “always takers” or “always recover”; (ii) 

2
0V   regardless of 

V1, “never takers” or “never recover”; (iii) 
2 1

V V , “compliers,” or those “helped” by 

V1; and (iv) 
2 1

1V V  , “defiers,” or those “hurt” by V1. Thus, from the perspective of 

V2, any finer-grained variation in 
2

( )U  beyond the canonical partitions is irrelevant. 
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These partitions are in one-to-one correspondence with principal strata, which in turn 

allow causal quantities to be expressed in simple algebraic expressions. For 

example, the average treatment effect (ATE) is equal to the proportion of compliers 

minus that of defiers.7 As Proposition 2 will show, by writing down all information in 

terms of these strata, essentially any causal inference problem can be converted into 

an equivalent optimization problem involving polynomials of variables that represent 

strata sizes. 

Finally, consider the more complex mediation DAG of Figure 2(a). Response 

functions for V1 and V2 remain as above. In contrast, V3 is caused by 

3 1 2
( ) { , }V V V

V
pa  via the structural equation 

3 3 1 2 2 3
( , , )V f V V U . Substituting in 

disturbance 
2 3 2 3

U u  produces one of 16 response functions of the form 

2 3
( )

3 1 2 3
: ( ) ( ) ( )

u
f V V V  , yielding 16 strata.8 

In turn, the number of principal strata determines the minimum complexity of a 

reduced but non-restrictive alternative model in which the full data law, or joint 

distribution over every potential outcome, is preserved. This means the reduction is 

w.l.o.g. for every possible factual or counterfactual quantity involving V. Specifically, 

the number of principal strata in the graph determines the minimum cardinalities of 

each 
k

U U  that are needed to represent the original model w.l.o.g., if we were to 

redefine Uk in terms of a categorical distribution over principal strata. For example, to 

capture the joint response patterns that a unit may have on V2 and V3, a reduced 

version of U23 can express any full data law if it has a cardinality of 
23

| ( ) | 4 16U   , 

because V2 has four possible response functions and V3 has 16. 

Below, Proposition 1 states that a generalization of this approach can produce non-

restrictive models w.l.o.g. for any discrete-variable DAG and any full data law. 

Crucially, this also holds for (1) graphs where a variable Vj is influenced by multiple 

disturbances Uk and 
k

U

, as in Figure 2(b); and (2) the challenging case of non-

geared graphs (Evans, 2018) such as Figure 2(c)—roughly speaking, when 

disturbances Uk, k
U


, and 

k
U


 touch overlapping combinations of main variables to 

create cycles of confounding. Formalization is provided later. 

Acc
ep

te
d 

M
an

us
cr

ipt



Proposition 1. Suppose  is a canonical DAG over discrete main variables V and 

disturbances U with infinite cardinality. The model over the full data law implied by  

is unchanged by assuming that the disturbances have sufficiently large finite 

cardinalities. 

A proof can be found in Appendix F.1, along with details on how to obtain a lower 

bound on non-restrictive cardinalities for the disturbances. Briefly, Proposition 1 

extends a result from Finkelstein et al. (2021), which showed there are reductions of 

( )U  that do not restrict the model over the factual V. We build on this result to 

show that there are reductions that do not restrict the full data law, or model over all 

factual and counterfactual versions of V. 

Though the theory of principal stratification is well understood when each main 

variable Vj is influenced by only one disturbance Uk, complications arise when Vj is 

influenced by multiple disturbances Uk and 
k

U

. For each such main variable, any 

one of the associated disturbances can be allocated to take primary responsibility—

i.e. to be the input for which the response function is partially applied. For the 

purposes of defining this response function, all remaining disturbances are treated 

as if they were main variables.9 For example, in Figure 2(b), V2 is influenced by both 

U12 and U23; we will allocate V2 to U23 for illustration, but allocating it to U12 would 

produce identical bounds. Next, we compute the cardinality of remaining 

disturbances as usual. Here, U12 is left only to determine V1, meaning that it has a 

cardinality of two. Finally, we return to the primary disturbance and determine its 

cardinality based on main variables and remaining disturbances. In this example, 

after fixing U23, the variable V2 is a function of V1 and U12, both binary, meaning that 

U23 has a cardinality of sixteen. 

Finally, Proposition 1 extends Evans (2018) by allowing us to develop generalized 

principal strata for graphs that are non-geared, meaning that disturbances do not 

satisfy the running intersection property.10 These cases differ only in that they 

contain cycles of confounding; after breaking the cycle at any point, they can be 

dealt with in the same manner as geared graphs. An example of a non-geared graph 

is given in Figure 2(c). Finkelstein et al. (2021) presents an algorithm for constructing 

a generalized principal stratification for non-geared graphs. In brief, the algorithm 
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breaks the confounding cycle by selecting an arbitrary disturbance—e.g., U13—and 

fixing its cardinality at a value that is guaranteed to be non-restrictive of the model 

over factual random variables, by Carathéodory’s theorem. In this case, based on 

U13’s district,11 
1

{V , V2, and 
3
}V , U13 can be analyzed w.l.o.g. as if it had a cardinality 

of 
1 2 3

| ( ) ( ) ( ) | 2V V V   . In all subsequent analysis of Figure 2(c), U13 would then 

treated as a main variable, allowing the graph to be analyzed as if it were geared. As 

in Figure 2(b), U12 then determines the response of V1 to U13. Finally, U23 jointly 

determines (i) the responses of V2 to V1 and U12 as well as (ii) V3 to V1, V2, and U13. 

We note that the number of parameters involved in non-geared graphs can quickly 

become intractable. In these cases, valid but possibly non-sharp bounds can always 

be obtained by solving a relaxed problem in which a single disturbance is connected 

to each main variable in a district, absorbing multiple disturbances that influence only 

a subset of those variables (for example, adding a U123 that absorbs U12, U13, and 

U23). 

In sum, all classes of discrete-variable DAGs can be parameterized in terms of 

generalized principal strata. In what follows, we show how this representation allows 

us to reformulate causal bounding problems in terms of polynomial programs that 

can be optimized over the sizes of these strata, subject to constraints implied by 

assumptions and available data. 

4 Formulating the polynomial program 

We now turn to the central problem of this paper: sharply bounding causal quantities 

with incomplete information. Our approach is to (i) rewrite the causal estimand into a 

polynomial expression, (ii) rewrite modeling assumptions and empirical information 

into polynomial constraints, and (iii) thereby transform the task into a constrained 

optimization problem that can be solved computationally. Appendix C.1 provides a 

detailed walkthrough of this process with a concrete instrumental variable problem, 

along with example code that illustrates how the above steps are automated by our 

software in merely eight lines of code. 

Our goal is to obtain sharp bounds on the estimand, or the narrowest range that 

contain all admissible values consistent with available information: structural causal 
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knowledge in the form of a canonical DAG, ; empirical evidence, ; and modeling 

assumptions, , formalized below. Importantly, our definition of “empirical evidence” 

flexibly accommodates essentially any data about the joint, marginal, or conditional 

distributions of the main variables. 

We will suppose the main variables take on values in a known, discrete set, 

( ) V . In this section, we will demonstrate (i) that { , , , }  restricts the 

admissible values of the target quantity, and (ii) this range of observationally 

indistinguishable values can be recovered by polynomial programming. The causal 

graph and variable space,  and , together imply an infinite set of possible 

structural equation models, each capable of producing the same full data laws. By 

Proposition 1, w.l.o.g., we can consider a simple model in which (i) each 

counterfactual main variable is a deterministic function of exogeneous, discrete 

disturbances; (ii) there are a relatively small number of such disturbances; and (iii) 

disturbances take on a finite number of possible values, corresponding to principal 

strata of the main variables. When repeatedly sampling units (along with each unit’s 

random disturbances, U), the k-th disturbance thus follows the categorical 

distribution with parameters { P r( ) : ( )}
k

U k k k k
U u u U   . By the properties of 

canonical DAGs, these disturbances are independent. It follows that the parameters 

U
 of the joint disturbance distribution P r( ) P r ( )

k k

k

U u  U u  not only fully 

determine the distribution of each factual main variable under no intervention, ( )
j

V 

—they also determine the counterfactual distribution of ( )
j

V a  under any intervention 

a, as well as its joint distribution with other counterfactual variables ( )
j

V


a  under 

possibly different interventions a . This leads to the following proposition, proven in 

Appendix F.2. 

Proposition 2. Suppose  is a canonical DAG and { ( ) }V v a  are 

counterfactual statements, indexed by , that variable V  will take on value v  under 

manipulation a . Let { : }{ }u1  be an indicator function that evaluates to 1 if and 

only if disturbance realizations 
1

{ , , }
K

u u u  deterministically lead to  being 

satisfied for every . Then under the structural equation model , 
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( )

P r { : } P r ( ) ,{ }
k

k k

u

U u



 
   

 
 

uu U

u1  (1) 

which is a polynomial equation in 
U

, the probabilities P r( )
k k

U u . 

For example, in the mediation setting of Figure 1(b), Proposition 2 implies that the 

joint distribution of the factual variables—
1 2
( ), ( )V V  , and 

3
( )V  —is given by 

1 2 3

1 1 2 2 3 3 1 1 2 3 2 3

{ , }

P r ( ) , ( ) , ( ) P r ( ) P r( ) ,( )
u u

V v V v V v U u U u



          

where { : } u u v  is the set of disturbance realizations that are consistent with a 

particular ( ) V v , in other words, 

 2 3 2 31
( ) ( )( )

1 2 3 1 1 2 1 2 3 1 2 3
{ , } : ( ) , ( ) , ( , ) .

u uu
u u f v f v v f v v v      

Alternatively, analysts may be interested in the probability that a randomly drawn unit 

i has a positive controlled direct effect when fixing the mediator to 
2

0V  . This is 

given by 
3 1 2 3 1 2

P r ( 0 , 0 ) 0 , ( 1, 0 ) 1[ ]V V V V V V       and is similarly expressed in 

terms of the disturbances as 
1 2 3

1 1 2 3 2 3

{ , }

P r ( ) P r( )

u u

U u U u

 

  , summing over a different 

subset of the disturbance space, 

 2 3 2 3
( ) ( )

1 2 3 3 1 2 3 1 2
{ , } : ( 1, 0 ) 1, ( 0 , 0 ) 0

u u
u u f V V f V V        . 

We now expand this result to include a large class of functionals of marginal 

probabilities and logical statements about these functionals. 

Corollary 1. Suppose  is a canonical DAG. Let 
V

 denote the full data law and 

1
( )g

V
 denote a functional of 

V
 involving elementary arithmetic operations on 

constants and marginal probabilities of 
V

. Then 
1
( )g

V
 can be re-expressed as a 

polynomial fraction in the parameters of 
2

, ( )g
U U

, by replacing each marginal 

probability with its Proposition 2 polynomialization. 

We denote this replacement process with the operation 

 1
g ( )p o lyn o m ia l fra c tio n a lize

V
. The corollary has a number of implications, which 

we discuss briefly. First, it shows that a wide array of single-world and cross-world 

functionals can be expressed as polynomial fractions. These include traditional 
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quantities such as the ATE, as well as more complex ones such as the pure direct 

effect and the probability of causal sufficiency. It also suggests any non-elementary 

functional of 
V

 can be approximated to arbitrary precision by a polynomial fraction, 

if the functional has a convergent power series. We note that non-elementary 

functionals rarely arise in practice, apart from logarithmic- or exponential-scale 

estimands.12 An example that our approach cannot handle is the non-analytic 

functional {A T E  is  ra t io n a l}1 . 

A non-obvious implication of Corollary 1 is that when (i) 
1
( )g

V
 is an elementary 

arithmetical functional; (ii) { , , , , }       is a binary comparison operator; and (iii) α 

is a finite constant, then any statement of the form 
1
( )   g 

V
 can be transformed into 

a set of equivalent non-fractional relations, { ( , )   0 : }h
U

s  . Here, each (·)h  

denotes a non-fractional polynomial in the parameters indicated;   is a possibly 

different binary comparison from ; and s are newly created auxiliary variables that 

are sometimes necessary. The transformation proceeds as follows. First, 
1
( )   g 

V
 

can be rewritten as 
2

( )   g 
U

, by Proposition 1. Then, note that any fractional 

2
( )g

U
 can be rewritten as some 3

( )

( )

g

h

U

U

 in which 
3
( )g

U
 has fewer fractions than 

2
( )g

U
. Regardless of whether ( )h

U
 is positive, negative, or of indeterminate sign, 

it can be shown that ( )h
U

 can be cleared to obtain an equivalent relation. The exact 

procedure differs for each case and, when ( )h
U

 is indeterminate, requires a set of 

auxiliary variables, s, to be created.13 If all fractions have been cleared from 
3
( )g

U
, 

then the rewritten statement is also of the promised form and we are done; 

otherwise, recurse. We denote this transformation of the original statement—i.e., 

polynomial-fractionalizing its components and then clearing all resulting fractions—

as  1
g ( )   p o lyn o m ia lize 

V
. 

By the same token, any estimand ( )g
V

 that is a polynomial-fractional ( )g 
U

 in the 

parameters of 
U

 can be re-expressed as a polynomial in the expanded parameter 

space, ( , )h
U

s , along with a set of additional polynomial relations. To see this, first 

define a new estimand, s, which is a monomial (and hence a polynomial). This new 

estimand can be made equivalent to the original one by imposing a new polynomial-

fractional constraint, ( ) 0s g 
V

. Any remaining fractions in the new constraint are 
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cleared as above. We will make extensive use of these properties to convert causal 

queries to polynomial programs. 

Algorithm 2 provides a step-by-step procedure for formulating a polynomial 

programming problem. Solving this program via Algorithm 3 then produces sharp 

bounds. Both algorithms, given in Appendix B, mirror the discussion here with more 

formality. We begin by transforming a factual or counterfactual target of inference  

into polynomial form, possibly creating additional auxiliary variables to eliminate 

fractions. To accomplish this task, the procedure utilizes the possibly non-canonical 

DAG  and the variable space ( )V  to re-express  in terms of functional 

parameters that correspond to principal strata proportions. The result is the objective 

function of the polynomial program. The procedure then polynomializes the sets of 

constraints resulting from empirical evidence and by modeling assumptions, 

respectively denoted  and . In Figure 2, if only observational data is available, 

then  consists of eight pieces of evidence, each represented as a statement 

corresponding to a cell of the factual distribution 

1 1 2 2 3 3 1 1 2 2 3 3
P r ( ) , ( ) , ( ) P r( , , )[ ]V v V v V v V v V v V v           for observable values in 

3
{0,1} . Modeling assumptions include all other information, such as monotonicity or 

dose-response assumptions; these can be expressed in terms of principal strata. For 

example, the assumed unit-level monotonicity of the 
1 2

V V  relationship (e.g., the “

no defiers” assumption of Angrist et al., 1996) can be written as the statement that 

2 1 2 1
P r ( 0 ) 1, ( 1) 0 0( )V V V V     .14 Finally, the statement that each disturbance k 

follows a categorical probability distribution is re-expressed as the polynomial 

relations P r( ) 0
k k k

U u u    and P r ( ) 1

k

k k

u

U u  . 

Algorithm 2 produces an optimization problem with a polynomial objective subject to 

polynomial constraints. This polynomial programming problem is equivalent to the 

original causal bounding problem. This leads directly to the following theorem. 

Theorem 1. Minimization (maximization) of the polynomial program produced by 

Algorithm 2 produces sharp lower (upper) bounds on  under the sample space 

( )V , structural equation model , additional modeling assumptions , and 

empirical evidence . 
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4.1 Example program for outcome-based selection 

For intuition, consider the simple example in Figure 3, motivated by a hypothetical 

study of discrimination in traffic law enforcement using (1) police data on vehicle 

stops and (2) traffic-sensor data on overall vehicle volume. For illustrative purposes, 

suppose all drivers behave identically. Here, {0 ,1}X   indicates whether a motorist is 

a racial minority and {0 ,1}Y   whether the motorist is stopped by police. X and Y are 

assumed to be unconfounded. However, there exists outcome-based selection: we 

only learn driver race (X) from police records if a stop occurs (Y = 1), thus precluding 

point identification. Panels (a–d) in Figure 3 depict the inputs to the algorithm: (a) the 

causal graph, ; (b) the observed evidence, , consisting of the marginal P r( )Y y  

and the conditional P r( | 1)X x Y  ; (c) additional assumptions, , such as a 

monotonicity assumption that white drivers are not discriminatorily stopped; and (d) 

the sample space ( , )X Y . The target  is the ATE [ ( 1) ( 0 )]Y x Y x   , the 

amount of anti-minority bias in stopping. Next, Figure 3(e) depicts functional 

parameterization in terms of six disturbance partitions, following Section 3.3. 

Applying simplifications from Section 4.2 results in elimination of P r( Y -d e f ie r )  by 

assumption, then elimination of redundant strata that complete the sum to unity, 

P r( X -c o n tro l)  and P r( Y -n e v e r ) . The problem can thus be reduced to three 

dimensions. Next, the ATE is re-written as the probability of an anti-minority stop, 

minus that of an anti-white stop (which is zero by assumption). Finally, Figure 3(f–i) 

depict how each constraint narrows the space of potential solutions, leaving the 

admissible region shown in Figure 3(i), the only part of the model space 

simultaneously satisfying all constraints. 

Once formulated in this way, optimization proceeds by locating the highest and 

lowest values of  within this region, which respectively represent the upper and 

lower bounds on the ATE. A variety of computational solvers can in principle be used 

to minimize and maximize it.15 However, in practice, the resulting polynomial 

programming problem can be much more complex than the simple case shown in 

Figure 3. For example, even seemingly simple causal problems can result in 

nonconvex objective functions or constraints; moreover, both the admissible region 

of the model space and the region of possible objective values can be 

disconnected.16 Local solvers thus cannot guarantee valid bounds without 
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exhaustively searching the space; when time is finite, these can fail to discover 

global extrema for the causal estimand, resulting in invalid intervals that are not 

guaranteed to contain the quantity of interest. 

4.2 Simplifying the polynomial program 

The time needed to solve polynomial programs can grow exponentially with the 

number of variables. To address this, in Appendix D, we employ various techniques 

that draw on graph theory and probability theory to simplify polynomial programs into 

forms with fewer variables that generally have identical solutions but are usually 

faster to solve. At a high level, these simplifications fall into four categories. 

Appendix D.1 proposes a simplification that reduces the degree of polynomial 

expressions. Using the graph’s structure, we show how to detect when a disturbance 

Uk is guaranteed to be irrelevant, meaning its parameters only occur in contexts 

where 
( )

P r ( )

k k

k k

u U

U u



  can be factored out and replaced with unity. Appendix D.2 

introduces a simplification that reduces the degree of polynomial expressions by 

exploiting equality constraints like the simple P r( X -c o n tro l) P r( X -tre a te d ) 1   example 

above. We note some practical considerations when using symbolic algebra systems 

such as SageMath (Stein et al., 2019), specifically about the computational efficiency 

of factoring out complex polynomial expressions and replacing them with constants, 

as opposed to solving for one variable in terms of others. Appendix D.3 discusses a 

broad class of simplifications that reduce the number of constraints in the program, 

but with important tradeoffs. We show that assumptions encoded in a DAG, such as 

the empty binary graph 
X Y

U X Y U  , allow the empirical evidence to be 

expressed using fewer constraints—here, the reduction uses only two pieces of 

information, P r( 1)X   and P r( 1)Y  , exploiting the previously mentioned equality 

constraints and the assumed independence of X and Y. This is a reduction from the 

three pieces of information needed to convey P r( , )X x Y y  ,17 but comes at the 

cost that analysts can no longer falsify the independence assumption. Finally, 

Appendix D.4 provides a simplification for detecting when constraints and 

parameters no longer bind the objective function, meaning they can be safely 

eliminated from the program. 
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We caution that the practical application of these techniques remains an important 

area for future research: applying these techniques in different orders, or even with 

slightly different software implementations, can produce optimization programs that 

are mathematically equivalent but can vary substantially in runtime. 

5 Computing ε-sharp bounds in polynomial 
programs 

We now turn to the practical optimization of the polynomial program defined by 

Algorithm 2, which we refer to as the primal program; see Figure 4(a) for an 

example. Per Theorem 1, minimization and maximization of the polynomialized 

target, ( )p , is equivalent to the causal bounding problem. (Optimization is implicitly 

over the admissible region of the model space.) We denote the sharp lower and 

upper bounds as m in ( )T 
p

p  and m ax ( )T 
p

p . As we note above, the 

challenge is that these problems are often nonconvex and high dimensional, 

meaning globally optimal solutions can be difficult to obtain. Conventional primal 

optimizers, which iteratively improve suboptimal values, can be trapped in local 

extrema, failing to produce valid bounds that contain all possible values of the 

estimand (including global extrema). 

To address this challenge and guarantee the validity of reported bounds, our 

approach incorporates dual techniques that do not directly optimize the original 

primal objective function, ( )p . Instead, these techniques construct alternative 

objective functions that are easier to optimize; solutions to the easier dual problems 

can then be related back to the original primal problems. In particular, we will 

construct piecewise linear dual envelope functions ( )p  and ( )p  that satisfy 

( ) ( ) ( ) p p p  for every p in the admissible region. An illustration is given in 

Figure 4(b). In statistics, related techniques have found use in variational inference, 

an approach that constructs an analytically tractable dual function that can be 

maximized in place of the likelihood function (Jordan et al., 1999; Blei et al., 2017).18 

A key property of this envelope is that the easier-to-compute dual bounds, 

m in ( )D 
p

p  and m a x ( )D 
p

p , will always bracket the unknown true sharp 

bounds. This is because ( )p  and ( )p  are downward- and upward-shifted 

Acc
ep

te
d 

M
an

us
cr

ipt



relaxations of the original objective function, which can only lead to a lower minimum 

and higher maximum, respectively. The dual bounds are thus guaranteed to be valid 

causal bounds. Viewed differently, the dual bounds ,D D 
   also represent outer 

bounds (where bounding addresses the computationally difficult task of computing 

the global extrema) on the unknown sharp causal bounds ,T T 
   (where bounding 

addresses the fundamental unknowability of the DGP). Here, a key consideration is 

that the choice of a dual envelope determines the looseness, or the duality gaps 

T D  and D T . Our task therefore reduces to the question of how to evaluate the 

looseness of the dual bounds and, if needed, to refine the envelope so that it leads 

to tighter dual bounds. 

We now discuss our procedure for assessing the looseness of the dual bounds. To 

start, note that for any admissible point in the model space, p, the corresponding 

value of the target quantity, ( )p , must satisfy ( )T T p  by definition, even 

when the true sharp bounds are unknown. This immediately suggests that for any 

collection of points { , , , }   p p p  within the admissible region for we choose to 

evaluate ( ·) , the lowest and highest values discovered—which we denote P  and 

P —must also be contained within the sharp bounds. In other words, ,P P 
   

represents an inner bound on the unknown sharp bounds ,T T 
  . Therefore, for any 

choice of dual envelope and any collection of evaluated points, we have 

D T P P T D     . We evaluate the looseness of the reported dual bounds by 

taking the ratio of the outer bounds’ excess width to the width of the inner bounds, 

   / 1D D P P     . It can be seen that when P D  and P D , then the 

reported dual bounds have provably attained sharpness and 0  . However, 0   

does not necessarily imply that the dual bounds are not sharp; for example, it may 

simply be that D T , so the lower bound is sharp, but the collection of points 

evaluated is insufficiently large, so that T P  and this sharpness cannot be proven. 

For this reason, we refer to ε as the worst-case looseness factor. 

We are now ready to discuss how bounds are iteratively refined; a step-by-step 

procedure is given in Algorithm 3 in Appendix B. Note that at the outset of the 

procedure, the initial dual envelope may lie far from the true objective function, 

meaning ε will be large. We employ the spatial branch-and-bound approach to 
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recursively subdivide the model space and efficiently search for regions in which the 

bounds may be improved. A variety of mature optimization frameworks can be used 

to implement the proposed methods, including Couenne and SCIP (Belotti 

et al., 2009; Vigerske and Gleixner, 2018); the key to Algorithm 3 is that the upper- 

and lower-bounding optimization problems must be executed in parallel, so that the 

relative looseness ε can be tracked over time. In addition to the polynomial program 

produced by Algorithm 2, our procedure accepts two stopping parameters: th re s h
 , the 

desired level of provable sharpness; and th re s h
 , the desired width of the bounds.19 

Figure 4 illustrates the procedure for the outcome-based selection problem of 

Figure 3. The algorithm receives the primal objective function, ( )p , shown in 

Figure 4(a), as input. It then partitions the parameter space into a series of branches, 

or connected subsets of the parameter space. Separate partitions,  and , are 

used for lower and upper bounding, respectively. Within each branch b, a linear 

function 
0

  p δ  is constructed; easily computed properties such as derivatives and 

boundary values are used to ensure that this plane lies above or below ( )p  for all 

admissible points in the branch.20 We collect these branch-specific bounds in the 

piecewise functions  ( ) ( )  if :
b b

b p p p  and  ( ) ( )  i f  :b b b p p p , 

which define the initial dual envelope shown with dashed blue lines in Figure 4(b). 

Because each piece is linear, it is straightforward to compute the extreme points of 

the dual envelope within each branch,  m in ( ) :
b bb

D  p p  and 

 m a x ( ) :b bb
D  p p . The overall dual (outer) bounds are then m in

b b
D D  and 

m a x
b b

D D , depicted with hollow blue triangles. 

Next, the algorithm seeks to expand the primal (inner) bounds. Recall that these 

bounds, [ , ]P P , are the minimum and maximum values of the target function that 

have been encountered in any set of admissible DGPs—regardless of how that set 

was constructed. We can therefore use standard constrained optimization 

techniques to optimize the primal problem. Various heuristics—e.g. initializing 

optimizers in regions that appear promising based on the duals—can also be used. 

The fact that these techniques are only guaranteed to produce local optima is not of 

concern, because primal bounds are used only for computational convenience. 

Examples of two admissible primal points are shown with red triangles in Figure 4(c). 
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These primal bounds represent the narrowest possible causal bounds: the 

(unknown) sharp lower bound T  must satisfy T P , and similarly the sharp upper 

bound must satisfy P T . This means entire swaths of the parameter space can 

now be ignored, greatly accelerating the search. For example, in Figure 4(c), the 

upper dual function (upper dashed blue lines) indicates that the rightmost three-

quarters of the parameter space cannot possibly produce a target value that is 

higher than P , the upper primal bound that has already been found (upper solid red 

triangle). Therefore, optimization of the upper dual bound can focus on the bracketed 

“subspace to search in next iteration.” Optimization of the lower dual bound only 

need consider regions that ( )p  indicates can produce lower values than P . 

A new refined dual envelope can now be constructed by subdividing the remaining 

space and recomputing tighter dual functions, as shown in Figure 4(d). The 

procedure is then repeated recursively—the algorithm heuristically selects branches 

in the model space that appear promising, then refines primal and dual bounds in 

turn. If a more extreme admissible target value is found, it is stored as a new primal 

bound. Finally, the algorithm prunes branches of  and  that cannot improve dual 

bounds or that wholly violate constraints. Optimization terminates when either ε 

reaches th re s h
  or D D    reaches th re s h

 . For complex problems, the time to 

convergence may be prohibitive. But because the dual function is always guaranteed 

to contain the true objective function, the algorithm is anytime—the user can halt the 

program at any point and obtain valid (but potentially loose) bounds. 

6 Statistical inference 

We now briefly discuss how to modify Algorithm 3 to account for sampling error in 

the empirical evidence used to construct bounds. A more rigorous formalization is 

provided in Appendix E. 

Consider a simulated binary X Y  graph with confounding 
X Y

X U Y  . Up until 

now, when discussing how empirical evidence constrains the admissible DGPs, we 

have only considered population distributions of observable quantities—here, 

P r( 0 , 0 ) 0 .1 2 1, P r( 1, 0 ) 0 .3 4 6 , P r( 0 , 1) 0 .3 4 9 , P r( 1, 1) 0 .1 8 4{ }X Y X Y X Y X Y            

. When these population constraints are input to the algorithm, we refer to the results 
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as the population bounds. In practice, however, analysts only have access to noisily 

estimated versions; with N = 1, 000, the sample analogues might respectively be 

0.113, 0.352, 0.357, and 0.178. By the plug-in principle, estimated bounds are 

obtained by supplying estimated constraints instead. In other words, we apply the 

algorithm as if P r( , ) P r ( , )X x Y y X x Y y     . 

Next, we propose two easily polynomializable methods to account for uncertainty 

from sampling error. Our general approach is to relax empirical-evidence constraints: 

we say that P r( , )X x Y y   must be near P r ( , )X x Y y  , rather than equaling it. 

Our first method is based on the “Bernoulli-KL” approach of Malloy et al. (2020), 

which constructs separate confidence regions for each observable P r( , )X x Y y  . 

For example, rather than constraining Algorithm 3 to only consider DGPs exactly 

satisfying P r( 0 , 0 ) 0 .1 2 1X Y    as in the population bounds, or 

P r( 0 , 0 ) 0 .1 1 3X Y    as in the estimated bounds, we instead allow it to consider 

any DGP in which 0 .0 7 3 P r( 0 , 0 ) 0 .1 6 3X Y    . Thus, each equality constraint in 

the original empirical evidence is replaced with two linear inequality constraints; this 

is equivalent to constraining P r( , )X x Y y   to lie within a hypercube. 

Our second method is based on the multivariate Gaussian limiting distribution of the 

multinomial proportion (Bienaymé, 1838). This approach will essentially say that 

P r( , )X x Y y   is constrained to lie within an ellipsoid, rather than a hypercube. Let 

E  be a vector collecting P r ( 0 , 0 ) , P r ( 1, 0 )[ X Y X Y    , P r ( 0 , 1)]X Y  .21 We 

then compute a confidence region for the distribution 
1 1

, d ia g ( )
N N

 
 

 
E E E E . 

This replaces all of the original equality constraints with a single quadratic inequality 

constraint of the form    
1

1 1
d ia g ( ) z

N N



 
    

 
E E E E E E E , where 

P r( 0 , 0 ) , P r( 1, 0 )[ X Y X Y    E , P r( 0 , 1)]X Y   and z is some critical value of 

the 2
  distribution. 

Specifics of the calculations are given in Appendix E. These confidence regions for 

the empirical quantities aim to jointly cover P r( , )X x Y y   for every x and y in at 

least 1   of repeated samples (the Bernoulli-KL method guarantees conservative 

coverage in finite samples, whereas the Gaussian method offers only asymptotic 
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guarantees). When this holds, confidence bounds obtained by optimizing subject to 

the relaxed empirical constraints are guaranteed to have at least 1   coverage of 

the population bounds. In Section 7.2, we show that empirically, confidence bounds 

obtained from both methods are conservative. 

7 Simulated examples 

7.1 Instrumental variables 

Noncompliance with randomized treatment assignment is a common obstacle to 

causal inference. Balke and Pearl (1997) showed that bounds on the ATE under 

noncompliance can be obtained via linear programming. However, that approach 

cannot be used to bound the local ATE (LATE) among “compliers” because this 

quantity is nonlinear. Angrist et al. (1996) shows the LATE can be point identified if 

certain conditions hold—including, notably, (i) the absence of a direct effect of 

treatment assignment Z on the outcome Y; and (ii) monotonicity, or the absence of “

defiers” in which actual treatment X is the inverse of Z.22 Because these may not be 

satisfied in practice, Figure 5 shows three possible sets of assumptions that analysts 

may make: (a) neither; (b) the former but not the latter; and (c) both. We simulate a 

true DGP corresponding to panel (b), in which no-direct-effect holds but monotonicity 

is violated. The true ATE is –0.25 and the true LATE is –0.36. We will suppose 

analysts have access to the population distribution P r( , , )Z z X x Y y   ; inference 

is discussed in Section 7.2. 

An overcautious analyst might be unwilling to rule out a direct Z Y  effect or defiers 

in Z X , making only assumptions shown in panel (a). Applying our method yields 

bounds of [ 0 .6 3, 0 .3 7 ]  and [ 1,1]  for the ATE and LATE, respectively—sharp, but 

uninformative in sign. With an additional no-direct-effect assumption, per panel (b), 

they would instead obtain ATE bounds of [ 0 .5 5 , 0 .1 5 ]  , revealing a negative effect 

and correctly containing the true ATE, –0.25. However, LATE bounds remain at 

[ 1,1] ; as compliers cannot be identified experimentally, this quantity is difficult to 

learn about without strong assumptions. Finally, an overconfident analyst might 

mistakenly make an additional monotonicity assumption. Helpfully, when asked to 

produce bounds, Algorithm 3 reports the causal query is infeasible—meaning that it 
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cannot locate any DGP consistent with data and assumptions. This clearly warns 

that the causal theory is deficient. If the analyst naïvely applied the traditional two-

stage least squares estimator, they would receive no such warning. Instead, they 

would obtain an erroneous point estimate of –0.74, roughly double the true LATE of –

0.36. 

7.2 Coverage of confidence bounds 

We now evaluate the performance of confidence bounds that characterize 

uncertainty due to sampling error, constructed according to Section 6 and Appendix 

E, using the instrumental variable model of Figure 5(b). Specifically, we draw 

samples of N = 1, 000, N = 10, 000, or N = 100, 000 observations from this DGP. For 

each sample, we then use the empirical proportions 
1

{ , , }
i i i

i

Z z X x Y y
N

   1  for 

all , , {0 ,1}x y z  . These eight quantities form the basis of estimated bounds, by the 

plug-in principle. To quantify uncertainty, we compute 95% confidence regions on 

the same observed quantities, then convert them to polynomial constraints for 

inclusion in Algorithm 3. Optimizing subject to these confidence constraints produces 

confidence bounds, depicted in Figure 6. For each combination of sample size and 

uncertainty method, we draw 1,000 simulated datasets and run Algorithm 3 on each. 

Table 1 reports average values of estimated confidence bounds obtained by 

Algorithm 3 over 1,000 simulated datasets, for varying N. At all sample sizes, 

estimated bounds are centered on population bounds. Figure 13 shows confidence 

bounds obtained across methods and sample sizes. The Bernoulli-KL method 

produces wider confidence intervals at all N; at N = 1, 000, it is generally unable to 

reject zero, whereas the asymptotic method does so occasionally. Differences in 

interval width persist but shrink rapidly as sample size grows and both methods 

collapse on population bounds. As discussed in Section 6, we find more 

conservative coverage for confidence bounds on the ATE (100% coverage of 

population bounds), compared to coverage of the underlying confidence regions on 

the observed quantities (95% joint coverage of observed population quantities for the 

asymptotic method). 
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7.3 More complex bounding problems 

We now examine four hypothetical DGPs, shown in Figure 7, featuring various 

threats to inference. Throughout, we target the ATE of X on Y. Panel (a) illustrates 

outcome-based selection: we observe unit i only if S = 1, where S may be affected 

by Y. Selection severity, P r( 0 )S  , is known, but no information about 

P r( , | 0 )X x Y y S    is available. X and Y are also confounded by unobserved U. 

Bounding in this setting is a nonlinear program, with an analytic solution recently 

derived in Gabriel et al. (2022). Panel (b) illustrates measurement error: an 

unobserved confounder U jointly causes Y and its proxy Y
 , but only treatment and 

the proxy outcome are observed. Bounding in this setting is a linear problem. A 

number of results for linear measurement error were recently presented in 

Finkelstein et al. (2020); here, we examine the monotonic errors case, where 

( 1) ( 0 )Y Y Y Y
 

   . Panel (c) depicts missingness in outcomes, i.e. nonresponse or 

attrition. Here, X affects both the partially observed Y and response indicator R; if R 

= 1, then Y Y

 , but if R = 0, then Y

  takes on the missing value indicator NA. 

Nonresponse on Y is differentially affected by both X and the value of Y itself (i.e. “

missingness not at random,” MNAR); Manski (1990) provides analytic bounds. 

Finally, panel (d) depicts joint missingness in both treatment and outcome—

sometimes a challenge in longitudinal studies with dropout—with MNAR on Y. 

Figure 8 illustrates how Algorithm 3 recovers sharp bounds. Each panel shows 

progress in time. Primal bounds (blue) can widen over time if more extreme, 

observationally equivalent models are found. Dual bounds (red) narrow as the outer 

envelope is tightened. Our method simultaneously searches for more extreme primal 

points and narrows the dual envelope. Analysts can terminate the process at any 

time, reporting guaranteed-valid dual bounds along with their worst-case 

suboptimality factor, ε—or await complete sharpness, 0  . 

In Figure 8(a–c), the algorithm converges on known analytic results. Ultimately, in 

the selection simulation (a), Algorithm 3 achieves bounds of [ 0 .5 0 , 0 .6 4 ] , correctly 

recovering Gabriel et al.'s (2022) analytic bounds; in (b), measurement error bounds 

are [ 0 .6 2 ,1 .0 0 ] , matching Finkelstein et al. (2020); and in (c), outcome missingness 

bounds are [ 0 .2 5 , 0 .7 5 ] , equaling Manski (1990) bounds. Somewhat 
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counterintuitively, Figure 8(d) shows dual bounds collapsing to a point, eventually 

point-identifying the ATE at –0.25 despite severe missingness. This surprising result 

turns out to be a special case of an approach using “shadow variables” developed by 

Miao et al. (2016).23 This example illustrates the algorithm is general enough to 

recover results even when they are not widely known in a particular model; note the 

commonly used approach of Manski (1990) produces far looser bounds of 

[ 0 .7 2 , 0 .4 0 ] , failing to exploit causal structure given in Figure 7(d). This result 

suggests our approach enables an empirical investigation of complex models where 

general identification results are not yet available. Situations where bounds converge 

suggest models where point identification via an explicit functional may be possible, 

potentially enabling new identification theory. 

8 Potential critiques of the approach 

Below, we briefly discuss several potential critiques of our method. 

“The user must know the true causal model.” This is false; users do not need to 

assert a faulty “complete” model, but rather only what they know or believe. Our 

approach simply derives the conclusions that follow from data and those 

transparently stated assumptions. 

“The bounds will be too wide to be informative.” This is no tradeoff: faulty point 

estimates based on faulty assumptions are also uninformative. When sharp bounds 

incorporating all defensible assumptions are wide, it merely means progress will 

require more information. 

“What about continuous variables?” Discrete approximations often suffice in applied 

work. If continuous treatments only affect discrete outcomes when exceeding a 

threshold, discretization is lossless. Future work may study discrete approximations 

when effects are smooth. 

“The bounds will take too long to compute.” Achieving 0   may sometimes take 

prohibitive time, but our approach remains faster than manual derivation. Figure 8 

shows that several recently published results were recovered in mere seconds. 
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Moreover, our anytime guarantee ensures that premature termination will still 

produce valid bounds. 

9 Conclusion 

Causal inference is a central goal of science, and many established techniques can 

point-identify causal quantities under ideal conditions. But in many applications, 

these conditions are simply not satisfied, necessitating partial identification—yet few 

tools for obtaining these bounds exist. For knowledge accumulation to proceed in the 

messy world of applied statistics, a general solution is needed. We present a tool to 

automatically produce sharp bounds on causal quantities in settings involving 

discrete data. Our approach involves a reduction of all such causal queries to 

polynomial programming problems, enables efficient search over observationally 

indistinguishable DGPs, and produces sharp bounds on arbitrary causal estimands. 

This approach is sufficiently general to accommodate essentially every classic 

inferential obstacle. 

Beyond providing a general tool for causal inference, our approach aligns closely 

with recent calls to improve research transparency by explicitly declaring estimands, 

identifying assumptions, and causal theory (Miguel et al., 2014; Lundberg 

et al., 2021). Only with a common understanding of goals and premises can scholars 

have meaningful debates over the credibility of research. When aspects of a theory 

are contested, our approach allows for a fully modular exploration of how 

assumptions affect empirical conclusions. Scholars can learn whether assumptions 

are empirically consequential, and if so, craft a targeted line of inquiry to probe its 

validity. Our approach can also act as a safeguard for analysts, flagging assumptions 

as infeasible when they conflict with observed information. 

Among other challenges, our method is not immune to universal issues in causal 

inference such as the difficulty of knowing the correct causal structure. Other 

obstacles relate to computation time for complex problems, an important avenue for 

future research. While we do supply a method to characterize the looseness of non-

sharp bounds, future work should seek to reduce computation time for sharp bounds, 

especially when incorporating point-identified subquantities or additional semi-
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parametric modeling approaches. Causal inference scholars may also use this 

method as an exploratory tool to aid in the discovery of new identification theory. 

These lines of inquiry now represent the major open questions in discrete causal 

inference. 

 

Notes 

1 Specifically, our results apply to elementary arithmetic functionals or monotonic 

transformations thereof—a broad set that essentially includes all causal 

assumptions, observed quantities, and estimands in standard use. For example, the 

average treatment effect and the log odds ratio can be sharply bounded with our 

approach, but non-analytic functionals (which are rarely if ever encountered) cannot. 

Functionals that do not meet these conditions can be approximated to arbitrary 

precision, if they have convergent power series. 

2 A subtle point in nonlinear settings is that the region of possible values for the 

estimand—i.e., estimand values associated with models in the model subspace that 

is consistent with available data and assumptions—may be disconnected. That is, 

while the sharp lower and upper bounds correspond to minimum and maximum 

possible values of the estimand, not all estimand values between these extremes are 

necessarily possible. 

3 Sharp bounds can always be obtained by exhaustively searching the model space. 

But the computation time required to do so—i.e., to solve the polynomial 

programming problem—can explode with the number of variables (principal strata 

sizes). 

4 The NPSEM-IE model states that each 
j

V V  and each 
k

U U  is a deterministic 

function of (i) variables in V U  corresponding to its parents in  and (ii) an 

additional disturbance term, 
j

V
 or 

k
U

. The crucial assumption in the NPSEM-IE is 

that these ϵ terms are mutually independent. Note that throughout this paper, we 

keep the presence of ϵ variables kept implicit; we will prove that each Vj can 
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equivalently viewed as a deterministic function of its parents in V U , absorbing the 

variation induced by ϵ terms into U. 

5 See Appendix F.3 for further discussion of the the finest fully randomized causally 

interpretable structured tree graph (FFRCISTG). 

6 When defining potential outcomes for Vj, intervention on Vj itself is ignored. 

7 To see this, note that the ATE is given by 

2 1 2 1 2 1 2 1

s tra ta

[ ( 1) ( 0 )] [ ( 1) ( 0 ) | s tra ta ] ·P r(s tra ta ) 0 ·P r( a lw a ys  ta k e r ) 0 ·P r( n e v e r  ta k e r ) 1·P r( c o m p li e r ) 1·P r(d e f ie r )V V V V V V V V          

. 

8 More generally, the number of unique response functions grows with (i) the 

cardinality of the variable, (ii) the number of causal parents it has, and (iii) the 

parents’ cardinalities. Specifically, Vj has 
| ( ( )) |

| ( ) |
j

V

j
V

V
p a

 possible mappings: given a 

particular input from Vj’s parents, the number of possible outputs for Vj is | ( ) |
j

V ; the 

number of possible inputs from Vj’s parents is 
( )

| ( ( )) | | ( ) |

j j

j j

V V

V V







 
V

V

p a

p a , the 

product of the parents’ cardinalities. 

9 Note that if any main variable V has multiple parents in U, there may be multiple 

valid parameterizations—i.e., methods for constructing generalized principal strata—

depending on which disturbance is assigned primary responsibility for determining 

which main variable. If each main variable has only a single parent in U, there is only 

a single functional parameterization. 

10 Here, the running intersection property requires that there exists a total ordering of 

disturbances such that the main variables touched by any Uk at most overlap with 

those touched by only one additional 
k k

U U

 . For example, in Figure 2(c), if the 

ordering is 
1 3 1 2 2 3

U U U  , then U23 touches both V2 and V3. Thus, V2 and V3 together 

can be influenced by at most one additional disturbance that is earlier in the 

ordering. This is not the case, because U12 touches V2, U13 touches V3, and both U12 

and U13 are prior to U23 in the ordering; thus, the children of U23 are influenced by 

multiple prior disturbances. Furthermore, there exists no other ordering that satisfies 
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the requirement, so Figure 2(c) is non-geared. For further discussion, see Finkelstein 

et al. (2021) 

11 Districts of a canonical graph are components that remain connected after 

removing arrows among V. 

12 Bounds on a monotonic transform of x can be obtained by bounding x, then 

applying the transform. 

13 First, consider strictly positive ( )h
U

; here, 
3
( ) ( )   0g h

U U
 is equivalent to the 

original statement. Second, consider strictly negative ( )h
U

: clearing the fraction 

yields 
3
( ) ( )   0g h

U U
 , where   reverses an inequality . Finally, in the case 

when ( )h
U

 can take on both positive and negative values, let an auxiliary variable 

s  s  be defined such that · ( ) 1 0s h  
U

, which is a polynomial relation of the 

promised form. It can now be seen that the original statement is equivalent to 

3
· ( )   0s g 

U
. For a concrete example of how auxiliary variables can be used to 

clear fractions, see Appendix C.1.3. 

14 Assumed population-level monotonicity is typically written 

2 1 2 1
[ ( 1) ( 0 )] 0V V V V    , but can be rewritten in terms of strata as 

2 1 2 1 2 1 2 1
P r ( 1) 1, ( 0 ) 0 P r ( 0 ) 1, ( 1) 0 0[ ] [ ]V V V V V V V V          . 

15 Throughout this paper, we will neglect the distinction between minimum 

(maximum) and infimum (supremum), as is standard practice in numerical 

optimization. 

16 For example, the polynomial constraint 3 2
0 .1x x    would produce a 

disconnected admissible region of ( , 0 .2 8 0 ] [0 .4 1 3, 0 .8 6 7 ]x     . Moreover, even 

connected admissible regions can produce disconnected sets of possible objective 

values; e.g., with the objective 
1

x
 (which can be transformed to a polynomial 

objective, as discussed on page §), the constraint { 1 1}x    leads to possible 

objective values of ( , 1] [1, )    . Note that discontinuity is a merely computational 

challenge rather than a conceptual issue, as the definition of the bounds in this case 

would be 
[ 1 ,1 ] [ 1 ,1 ]

1 1
m in , m a x ( , )

x x

x x
   

 
  

 
 

. 
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17 Any one of the four cells can be automatically eliminated, as it is redundant given 

the implied constraint that 
,

P r ( , ) 1

x y

X x Y y    by construction of the principal 

strata. 

18 Variational inference uses an analytic relaxation to obtain a dual that lower-bounds 

the likelihood function everywhere in the model space. Our approach diverges in that 

(i) we conduct two simultaneous dual relaxations to obtain an envelope—both lower 

and upper—for the original primal function; (ii) we computationally generate 

piecewise dual functions, rather than analytically deriving smooth duals, and (iii) 

instead of working with a fixed dual function, we generate a sequence of dual 

envelopes that iteratively tighten the duals. 

19 We include th re s h
  to address the possibility of point identification, in which case 

0P P  , finite th re s h
  cannot be achieved, and algorithms based on this stopping 

criteria alone will not terminate. 

20 For example, consider the objective function 2
( )x x . Any tangent line is a valid 

lower dual function. Moreover, within any interval [ , ]
a b

x x , the secant line from 

 , ( )
a a

x x  to  , ( )
b b

x x  is a valid upper dual function. A piecewise linear envelope 

can thus be constructed by proceeding one branch at a time, computing derivatives 

(for example, at the branch midpoint) to obtain a branch-specific lower dual function 

( )
b

x  and boundary values to obtain a branch-specific upper dual function ( )b x . 

21 To avoid degeneracy issues, one empirical quantity is excluded, as it must sum to 

unity. 

22 Other conditions include ignorability of Z and a non-null effect of Z on X. 

23 Specifically, it can be shown the ATE is identified for the Figure 7(d) graph only 

among faithful distributions where X Y  is non-null—i.e. almost everywhere in the 

model space. 
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Fig. 1 Canonicalization of a mediation graph. Non-canonical and canonicalized 

forms are given in panels (a) and (b), respectively. Both are fully equivalent with 

respect to their full data law. Canonicalization proceeds as follows: (i) the dependent 

disturbance U3 is absorbed into its parent U23; (ii) the superfluous U2 is eliminated as 

it influences a subset of U23’s children; and (iii) the irrelevant U13 is absorbed into the 

1 3
V V  arrow as it is neither observed nor of interest. A complete guide to 

canonicalization is given in Appendix B.1. 
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Fig. 2 Any discrete-variable DAG can be represented in terms of principal strata. 

Panels (a–b) depict geared graphs. In (a), each main variable is influenced by only 

one disturbance. In (b), V2 is influenced by both U12 and U23. In (c), a non-geared 

graph with cyclical confounding by U12, U23, and U13 is shown. For each case, the 

functional parameterizations—representations of each graph in terms of principal 

strata–are illustrated below. 
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Fig. 3 Visualization of Algorithm 2. Constructing the polynomial program for a simple 

bounding problem with outcome-dependent selection, motivated by a study of discrimination in traffic 

law enforcement. Panels (a–d) depict inputs to the algorithm. The graph, , contains unconfounded 

treatment X and outcome Y. The evidence  contains (i) the marginal distribution of Y and (ii) the 

conditional distribution of X if Y = 1.  consists of a monotonicity assumption.  states that X and Y 

are binary. The target  is the ATE [ ( 1) ( 0 )]Y x Y x   . Panel (e) depicts functional 

parameterization with six disturbance partitions, following Section 3.3. Applying simplifications from 

Section 4.2 results in elimination of P r( Y -d e f ie r )  by assumption, then elimination of P r( X -c o n tro l)  

and P r( Y -n e v e r )  by the second axiom. Panels (f–i) show constraints in the simplified model space. 

 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 4 Visualization of Algorithm 3. Computing ε-sharp bounds for the outcome-based 

selection problem of Figure 3. Panel (a) shows how the target ATE varies over the feasible region of 

the model space (reparameterized in terms of possible 
U

 distributions) depicted in Figure 3(i). Panel 

(b) depicts the first step of our method, partitioning of the model space into branches within which 

computationally tractable, piecewise linear dual relaxations are obtained. Panel (c) shows how 

suboptimal values of the primal function, obtained with standard local optimizers, can be combined 

with the dual envelope to prune large regions of the model space that cannot possibly contain the 

global extrema. In panel (d), the procedure applied recursively. The pruned model space is 

rebranched and heuristic primal optimization is repeated, potentially yielding narrower dual bounds 

and wider primal bounds, respectively. The looseness factor, ε, narrows until reaching zero 

(sharpness) or a specified threshold. 
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Fig. 5 DGPs with noncompliance. Three possible scenarios involving 

encouragement Z, treatment X, and outcome Y. Panel (b) represents the true 

simulation DGP, where Z X  monotonicity is violated (indicated by absence of a 

+). Panel (a) depicts a “overcautious” analyst unwilling to assume away a direct 

Z Y  effect. Panel (c) depicts an “overconfident” analyst that incorrectly assumes 

monotonicity of Z X . 

 

Fig. 6 Coverage of confidence bounds. Each of 1,000 simulations is depicted with a 

horizontal line. For each simulation, a horizontal error bar represents a 95% confidence 

bound obtained per Section 6. All confidence bounds fully contain the population bounds, 

indicating 100% coverage. The upper (lower) row of panels reflect confidence bounds 

obtained with the Bernoulli-KL (asymptotic) method. Columns of panels report confidence 

bounds obtained using samples of various sizes. Vertical dotted gray lines show true 

population lower and upper bounds, which contain the true ATE of –0.25; vertical dashed 

black lines indicate zero. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 7 Various threats to inference. Panels depict (a) outcome-based selection, (b) 

measurement error, (c) nonresponse and (d) joint missingness. In each graph, X and 

Y are treatment and outcome, respectively. Dotted red regions represent observed 

information. In (a), the box around S indicates selection: other variables are only 

observed conditional on S = 1. In (b), Y
  represents a mismeasured version of the 

unobserved true Y. In (c), RY indicates reporting, so that Y Y

  if R = 1 and is 

missing otherwise. In (d), both treatment and outcome can be missing; and 

missingness on X can affect missingness on Y. 
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Fig. 8 Computation of ATE bounds. Progress of Algorithm 3 for simulation data 

from DGPs depicted in Figure 7(a–d). Black error bars are known analytic bounds, y-

axes are ATE values, and x-axes are runtimes of Algorithm 3. Red regions are dual 

bounds, which always contain sharp bounds and the unknown true causal effect; 

these can only narrow over time, converging on optimality. Blue regions are primal 

bounds, which can only widen over time as more extreme models are found. 

Optimization stops when primal and dual bounds meet, indicating bounds are sharp. 

Prior analytic bounds are sharp for problems (a–c). In setting (d), Algorithm 3 

achieves point identification, but Manski (1990) bounds do not.  
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Table 1 Bias of estimated bounds. Average estimated bounds simulated datasets 

of varying size. Average estimated bounds correspond closely to population bounds. 

Quantity  N = 1, 000 N = 10, 000 N = 100, 000 Population 

Lower bound –0.5497  –0.5498  –0.5500  –0.5502  

Upper bound –0.1453  –0.1455  –0.1459  –0.1460  
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