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Abstract

Applied research conditions often make it impossible to point-identify causal esti-
mands without untenable assumptions. Partial identification—bounds on the range of
possible solutions—is a principled alternative, but the difficulty of deriving bounds in
idiosyncratic settings has restricted their application. We present a general, automated
numerical approach to causal inference in discrete settings. We show causal questions
with discrete data reduce to polynomial programming problems, then present an algo-
rithm to automatically bound causal effects using efficient dual relaxation and spatial
branch-and-bound techniques. The user declares an estimand, states assumptions, and
provides data—however incomplete or mismeasured. The algorithm then searches over
admissible data-generating processes and outputs the most precise possible range consis-
tent with available information—i.e., sharp bounds—including a point-identified solution
if one exists. Because this search can be computationally intensive, our procedure reports
and continually refines non-sharp ranges guaranteed to contain the truth at all times, even
when the algorithm is not run to completion. Moreover, it offers an ε-sharpness guaran-
tee, characterizing the worst-case looseness of the incomplete bounds. These techniques
are implemented in our Python package, autobounds. Analytically validated simula-
tions show the method accommodates classic obstacles including confounding, selection,
measurement error, noncompliance, and nonresponse.
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ming, polynomial programming
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1 Introduction

When causal quantities cannot be point identified, researchers often pursue partial identi-

fication to quantify the range of possible answers. These solutions are tailored to specific

settings (e.g. Lee, 2009; Sjölander et al., 2014; Kennedy et al., 2019; Knox et al., 2020; Gabriel

et al., 2022), but the idiosyncrasies of applied research can render prior results unusable if even

slightly differing scenarios are encountered. This piecemeal approach to deriving causal bounds

presents a major obstacle to scientific progress. To increase the pace of discovery, researchers

need a more general solution.

In this paper, we present an automated approach to causal inference in discrete settings

which applies to all causal graphs, as well as all standard observed quantities and domain

assumptions. Users declare an estimand, state assumptions, and provide available data—

however incomplete or mismeasured. The algorithm numerically computes sharp bounds, the

most precise possible answer to the causal query given these inputs, including a unique point

estimate if one exists. Our approach accommodates any classic threat to inference, including

missing data, selection, measurement error, and noncompliance. It can fuse information from

numerous sources—including observational and experimental data, datasets that are unlinkable

due to anonymization, or even summary statistics from other studies. The method allows

for sensitivity analyses on any assumption by relaxing or removing it entirely. Moreover, it

alerts users when assumptions conflict with observed data, indicating faulty causal theory.

We also develop techniques for drawing statistical inferences about estimated bounds. We

implement these methods in a Python package, autobounds, and demonstrate them with a

host of analytically validated simulations.

Our work advances a rich literature on partial identification in causal inference (Manski,

1990; Zhang and Rubin, 2003; Cai et al., 2008; Swanson et al., 2018; Gabriel et al., 2022;

Molinari, 2020), outlined in Section 2, which has sometimes cast partial identification as a

constrained optimization problem. In pioneering work, Balke and Pearl (1997) provided an

automatic sharp bounding method for causal queries that can be expressed as linear pro-
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gramming problems. However, numerous estimands and empirical obstacles do not fit this

description, and a complete and feasible computational solution has remained elusive.

When feasible, sharp bounding represents a principled and transparent method that makes

maximum use of available data while acknowledging its limitations. Claims outside the bounds

can be immediately rejected, and claims inside the bounds must be explicitly justified by addi-

tional assumptions or new data. But several obstacles still preclude widespread use. For one,

analytic bounds—which can be derived once and then applied repeatedly, unlike our numerical

bounds which must be recomputed each time—remain intractable for many problems. Within

the subclass of linear problems, Balke and Pearl’s (1997) simplex method offers an efficient

analytic approach, but analytic nonlinear solutions are still derived case by case (e.g. Kennedy

et al., 2019; Knox et al., 2020; Gabriel et al., 2022). Moreover, though general sharp bounds

can in theory be obtained by standard nonlinear optimization techniques (Geiger and Meek,

1999; Zhang and Bareinboim, 2021), in practice, such approaches are often computationally

infeasible. This is because without exhaustively exploring a vast model space to avoid local

optima, they can inadvertently report invalid bounds that may fail to contain the truth.

To address these limitations, we first show in Sections 3–4 that—using a generalization

of principal strata (Frangakis and Rubin, 2002)—causal estimands, modeling assumptions,

and observed information can be rewritten as polynomial objective functions and polynomial

constraints with no loss of information. We extend results from Geiger and Meek (1999) and

Wolfe et al. (2019) to show that essentially all discrete partial identification problems reduce to

polynomial programs, a well-studied class of optimization tasks that nest linear programming

as a special case.1 However, it is well known that solving polynomial programs to global

optimality is in general NP-hard, highlighting the need for efficient bounding techniques that

remain valid even under time constraints (Belotti et al., 2009; Vigerske and Gleixner, 2018).

1Specifically, our results apply to elementary arithmetic functionals or monotonic transformations thereof—
a broad set that essentially includes all causal assumptions, observed quantities, and estimands in standard use.
For example, the average treatment effect and the log odds ratio can be sharply bounded with our approach,
but non-analytic functionals (which are rarely if ever encountered) cannot. Functionals that do not meet these
conditions can be approximated to arbitrary precision, if they have convergent power series.
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To ameliorate these computational difficulties, Section 4.2 shows how causal graphs can be

restated as equivalent canonical models, further simplifying the polynomial program. Next,

Section 5 develops an efficient optimization procedure, based on dual relaxation and spatial

branch-and-bound relaxation techniques, that provides bounds of arbitrary sharpness. We

show this procedure is guaranteed to achieve complete sharpness with sufficient computation

time; in the problems we examine here, this occurs in a matter of seconds. However, in cases

where the time needed is prohibitive, our algorithm is anytime (Dean and Boddy, 1988), mean-

ing it can be interrupted to obtain non-sharp bounds that are nonetheless guaranteed to be

valid. Crucially, our technique offers an additional guarantee we term “ε-sharpness,” a worst-

case looseness factor that quantifies how much the current non-sharp bounds could potentially

be improved with additional computation. In Section 6, we provide two approaches for char-

acterizing uncertainty in the estimated bounds. We demonstrate our technique in a series of

analytically validated simulations in Section 7, showing the flexibility of our approach and the

ease with which assumptions can be modularly imposed or relaxed. Moreover, we demonstrate

how it can improve over widely used bounds (Manski, 1990) and recover a counterintuitive

point-identification result in the literature on nonrandom missingness (Miao et al., 2016).

In short, our approach offers a complete and computationally feasible approach to causal

inference in discrete settings. Given a well-defined causal query, valid assumptions, and data,

researchers now have a general and automated process to draw causal inferences that are

guaranteed to be valid and, with sufficient computation time, provably optimal.

2 Related literature

Researchers have long sought to automate partial identification by recasting causal bounding

problems as constrained optimization problems that can be solved computationally. Our work

is most closely related to Balke and Pearl (1997), which showed that certain bounding problems

in discrete settings—generally, when interventions and outcomes are fully observed—could be

formulated as the minimization and maximization of a linear objective function subject to

linear equality and inequality constraints. Such programming problems admit both symbolic
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solutions and highly efficient numerical solutions. Subsequent studies have proven that the

bounds produced by this technique are sharp (Bonet, 2001; Ramsahai, 2012; Sachs et al., 2020).

These results were extended by Geiger and Meek (1999), who showed that a much broader

class of discrete problems can be formulated in terms of polynomial relations when analysts

have precise information about the kinds of disturbances or confounders that may exist.2 In

addition to the well-known conditional independence constraints implied by d-separation, these

can include generalized equality constraints (Verma and Pearl, 1990; Tian and Pearl, 2002)

and generalizations of the instrumental inequality constraints (Pearl, 1995; Bonet, 2001).

Geiger and Meek (1999) note that in theory, quantifier elimination algorithms can provide

symbolic bounds. However, the time required for quantifier elimination grows as a doubly

exponential function of the number of parameters, rendering it infeasible for all but the simplest

cases. At the core of this issue is that symbolic methods provide a general solution, meaning

that they must explore the space of all possible inputs. In contrast, numerical methods such

as ours can accelerate computation by eliminating irrelevant portions of the model space.

Even so, computation can be time-consuming.3 In practice, many optimizers can rapidly

find reasonably good values but cannot guarantee optimality without exhaustively searching

the model space. This approach poses a challenge for obtaining causal bounds, which are

global minimum and maximum values of the estimand across all models that are admissible,

or consistent with observed data and modeling assumptions. If a local optimizer operates on

the original problem (the primal), proceeding from the interior and widening bounds as more

extreme models are discovered, then failing to reach global optimality will result in invalid

bounds—ranges narrower than the true sharp bounds, failing to contain all possible solutions.

In the following sections, we detail our approach to addressing each of these outstanding

2A subtle point in nonlinear settings is that the region of possible values for the estimand—i.e., estimand
values associated with models in the model subspace that is consistent with available data and assumptions—
may be disconnected. That is, while the sharp lower and upper bounds correspond to minimum and maximum
possible values of the estimand, not all estimand values between these extremes are necessarily possible.

3Sharp bounds can always be obtained by exhaustively searching the model space. But the computation
time required to do so—i.e., to solve the polynomial programming problem—can explode with the number of
variables (principal strata sizes).
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obstacles to automating the discovery of sharp bounds for discrete causal problems.

3 Preliminaries

We now define notation and introduce key concepts. A technical glossary is given in Ap-

pendix A. We first review how any causal model represented by a directed acyclic graph (DAG)

can be “canonicalized,” or reduced into simpler form, without loss of generality (w.l.o.g.; Evans,

2016). We describe how these graphs give rise to potential outcomes and a generalization of

principal strata (Frangakis and Rubin, 2002), two key building blocks in our analytic strategy.

We follow the convention that bold letters denote collections of variables; uppercase and

lowercase letters denote random variables and their realizations, respectively. Consider a struc-

tured system in which random vectors V = {V1, . . . , VJ} represent observable main variables

and U = {U1, . . . , UK} represent unobserved disturbances. We will assume each observed vari-

able Vj is discrete and its space S(Vj) has finite cardinality; the spaces of unobserved variables

are unrestricted. Observed data for each unit i ∈ {1, . . . , N} is an i.i.d. draw from V . Fur-

ther suppose that causal relationships between all variables in V and U are represented by a

nonparametric structural equation model with independent errors (NPSEM-IE, Pearl, 2000).4

Here, we concentrate on deriving results for the NPSEM-IE model, but our approach is also

applicable to the model of Robins (1986) and Richardson and Robins (2013) without change.5

Figure 1 presents a DAG G representing relationships between V ∪ U . Note that fully

observing these variables would be sufficient to identify every quantity we consider in this

paper. However, since disturbances U are unobserved, and since information about main

variables V may be incomplete, partial identification techniques are needed.

4The NPSEM-IE model states that each Vj ∈ V and each Uk ∈ U is a deterministic function of (i) variables
in V ∪ U corresponding to its parents in G and (ii) an additional disturbance term, εVj

or εUk
. The crucial

assumption in the NPSEM-IE is that these ε terms are mutually independent. Note that throughout this
paper, we keep the presence of ε variables kept implicit; we will prove that each Vj can equivalently viewed as
a deterministic function of its parents in V ∪U , absorbing the variation induced by ε terms into U .

5See Appendix F.3 for further discussion of the the finest fully randomized causally interpretable structured
tree graph (FFRCISTG).
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3.1 Canonical DAGs

We now discuss how canonicalizing DAGs—reformulating them w.l.o.g. into a simpler form—

simplifies the bounding task. A DAG is said to be in canonical form if (i) no disturbance Uk has

a parent in G; and (ii) there exists no pair of disturbances, Uk and Uk′ , such that Uk influences

a subset of variables influenced by Uk′ . Evans (2016) showed that any non-canonical DAG G ′

has a canonical form G with an identical distribution governing all variables in V ; an algorithm

for obtaining this canonical form is given in Appendix B.1. In short, canonicalization distills

the data-generating process (DGP) to its simplest form by eliminating potentially complex

networks of irrelevant disturbances. Figure 1 shows a non-canonical DAG in panel (a); panel

(b) gives the canonicalized version. Note that disturbances affecting only a single variable,

such as U1, are often left implicit; here, we depict them explicitly for clarity.

Figure 1: Canonicalization of a mediation graph. Non-canonical and canonicalized forms
are given in panels (a) and (b), respectively. Both are fully equivalent with respect to their full
data law. Canonicalization proceeds as follows: (i) the dependent disturbance U3 is absorbed
into its parent U23; (ii) the superfluous U2 is eliminated as it influences a subset of U23’s children;
and (iii) the irrelevant U13 is absorbed into the V1 → V3 arrow as it is neither observed nor of
interest. A complete guide to canonicalization is given in Appendix B.1.

U13

U1 U2 U23 U3

V1 V2 V3

(a)

U1 U23

V1 V2 V3

(b)

3.2 Potential outcomes

The notation of potential outcome functions allows us to compactly express the effects of

manipulating variable Vj’s main parents, paV (Vj), or other ancestors that are also main vari-

ables. Similarly, paU (Vj) denotes parents of Vj that are disturbances. Let A ⊂ V be in-

tervention variables that will be fixed to A = a. When A = ∅, so no intervention occurs,

then define Vj(a) = Vj, the natural value. When A ⊆ paV (Vj), so only immediate par-

ents are manipulated, then the potential outcome function is given by its structural equation,
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Vj(a) = fj
[
A = a,paV (Vj) \A,paU (Vj)

]
. For example, in Figure 1(b), the effect of inter-

vention V2 = v2 on outcome V3 is defined in terms of V3(V2 = v2) = f3(V2 = v2, V1, U23). Here,

the intervention set is A = V2, and the remaining parents of V3—the non-intervened main

parent, paV (V3) \A = V1, and the disturbance parent, paU (V3) = U23—are allowed to follow

their natural distributions. We now define more general potential outcome functions by recur-

sive substitution (Richardson and Robins, 2013; Shpitser, 2018). For arbitrary interventions on

A ⊂ V , let Vj(a) = Vj
(
{a` : A` ∈ paV (Vj)}∪{Vj′(a) : Vj′ ∈ paV (Vj)\A}

)
; here, ` is a generic

index that sweeps over main variables in the graph. That is, if a parent of Vj is in A, it is set to

the corresponding value in a. Otherwise, the parent takes its potential value after intervention

on causally prior variables, or its natural value otherwise. To obtain the parent’s potential

value, apply the same definition recursively.6 For example, in Figure 1(b), potential outcomes

for V3 include (i) V3(∅) = V3(V1, V2), the observed distribution; (ii) V3(v1) = V3[v1, V2(v1)],

relating to total effects; and (iii) V3(v1, v2), relating to controlled effects.

3.3 Generalized principal stratification

In this section, we show how any DAG and any causal quantity can be represented w.l.o.g.

using a generalization of principal strata. Roughly speaking, principal strata on a variable

Vj are groups of units that would respond to counterfactual interventions in the same way

(Greenland and Robins, 1986; Frangakis and Rubin, 2002). Formally, let A = paV (Vj) be an

intervention set for which all main parents of Vj are jointly set to some a, and consider unit

i’s collection of potential outcomes
{
Vi,j(A = a) : a ∈ S(A)

}
. Each principal stratum of Vj

then represents a subset of units in which this collection is identical.

The NPSEM of a graph is closely related to its principal stratification. This is because each

potential outcome in the collection above is given by Vi,j(A = a) = fj[A = a,pai,U (Vj)], in

which the only source of random variation is unit i’s realization of the relevant disturbances.

After fixing these disturbances, all structural equations become deterministic, meaning that a

6When defining potential outcomes for Vj , intervention on Vj itself is ignored.
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realization of Ui must fix every potential outcome for every variable under every intervention.

For example, consider the simple DAG U1 → V1 → V2 ← U2, in which V1 and V2 are binary.

This relationship is governed by the structural equations V1 = f1(U1) and V2 = f2(V1, U2),

where the functions f1 : S(U1)→ S(V1) and f2 : S(V1)×S(U2)→ S(V2) are deterministic and

shared across all units. Thus, the only source of randomness is in U = {U1, U2}.

Analysts generally do not have direct information about these disturbances. For example,

U1 could potentially take on any value in (−∞,∞). However, as Proposition 1 will state in

greater generality, this variation is irrelevant because V1 has only two possible values: 0 and

1. The space of U1 can therefore be divided into two canonical partitions (Balke and Pearl,

1997)—those that deterministically lead to V1 = 0 and those that lead to V1 = 1—and thus

treating U1 as if it were binary is w.l.o.g.

Strata for V2 are similar but more involved. After U2 is realized, it induces the partially

applied response function V2 = f2(V1, U2 = u2) = f
(u2)
2 (V1), which deterministically governs

how V2 counterfactually responds to V1. Regardless of how many are in S(U2), this response

function must fall into one of only four possible strata, each a mapping of the form f
(u2)
2 :

S(V1) → S(V2) (Angrist et al., 1996). These groups are (i) V2 = 1 regardless of V1, “always

takers” or “always recover”; (ii) V2 = 0 regardless of V1, “never takers” or “never recover”;

(iii) V2 = V1, “compliers,” or those “helped” by V1; and (iv) V2 = 1 − V1, “defiers,” or those

“hurt” by V1. Thus, from the perspective of V2, any finer-grained variation in S(U2) beyond

the canonical partitions is irrelevant. These partitions are in one-to-one correspondence with

principal strata, which in turn allow causal quantities to be expressed in simple algebraic

expressions. For example, the average treatment effect (ATE) is equal to the proportion of

compliers minus that of defiers.7 As Proposition 2 will show, by writing down all information

in terms of these strata, essentially any causal inference problem can be converted into an

equivalent optimization problem involving polynomials of variables that represent strata sizes.

Finally, consider the more complex mediation DAG of Figure 2(a). Response functions

7To see this, note that the ATE is given by E[V2(V1 = 1) − V2(V1 = 0)] =
∑

strata E[V2(V1 = 1) − V2(V1 =
0) | strata] · Pr(strata) = 0 · Pr(always taker) + 0 · Pr(never taker) + 1 · Pr(complier)− 1 · Pr(defier).
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for V1 and V2 remain as above. In contrast, V3 is caused by paV (V3) = {V1, V2} via the

structural equation V3 = f3(V1, V2, U23). Substituting in disturbance U23 = u23 produces one

of 16 response functions of the form f
(u23)
3 : S(V1)× S(V2)→ S(V3), yielding 16 strata.8

In turn, the number of principal strata determines the minimum complexity of a reduced

but non-restrictive alternative model in which the full data law, or joint distribution over every

potential outcome, is preserved. This means the reduction is w.l.o.g. for every possible factual

or counterfactual quantity involving V . Specifically, the number of principal strata in the

graph determines the minimum cardinalities of each Uk ∈ U that are needed to represent the

original model w.l.o.g., if we were to redefine Uk in terms of a categorical distribution over

principal strata. For example, to capture the joint response patterns that a unit may have

on V2 and V3, a reduced version of U23 can express any full data law if it has a cardinality of

|S(U23)| = 4× 16, because V2 has four possible response functions and V3 has 16.

Below, Proposition 1 states that a generalization of this approach can produce non-restrictive

models w.l.o.g. for any discrete-variable DAG and any full data law. Crucially, this also holds

for (1) graphs where a variable Vj is influenced by multiple disturbances Uk and Uk′ , as in Fig-

ure 2(b); and (2) the challenging case of non-geared graphs (Evans, 2018) such as Figure 2(c)—

roughly speaking, when disturbances Uk, Uk′ , and Uk′′ touch overlapping combinations of main

variables to create cycles of confounding. Formalization is provided later.

Proposition 1. Suppose G is a canonical DAG over discrete main variables V and distur-

bances U with infinite cardinality. The model over the full data law implied by G is unchanged

by assuming that the disturbances have sufficiently large finite cardinalities.

A proof can be found in Appendix F.1, along with details on how to obtain a lower bound on

non-restrictive cardinalities for the disturbances. Briefly, Proposition 1 extends a result from

Finkelstein et al. (2021), which showed there are reductions of S(U) that do not restrict the

8More generally, the number of unique response functions grows with (i) the cardinality of the variable, (ii)
the number of causal parents it has, and (iii) the parents’ cardinalities. Specifically, Vj has |S(Vj)||S(paV (Vj))|

possible mappings: given a particular input from Vj ’s parents, the number of possible outputs for Vj is |S(Vj)|;
the number of possible inputs from Vj ’s parents is |S(paV (Vj))| =

∏
Vj′∈paV (Vj)

|S(Vj′)|, the product of the

parents’ cardinalities.
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model over the factual V . We build on this result to show that there are reductions that do

not restrict the full data law, or model over all factual and counterfactual versions of V .

Though the theory of principal stratification is well understood when each main variable Vj

is influenced by only one disturbance Uk, complications arise when Vj is influenced by multiple

disturbances Uk and Uk′ . For each such main variable, any one of the associated disturbances

can be allocated to take primary responsibility—i.e. to be the input for which the response

function is partially applied. For the purposes of defining this response function, all remaining

disturbances are treated as if they were main variables.9 For example, in Figure 2(b), V2

is influenced by both U12 and U23; we will allocate V2 to U23 for illustration, but allocating

it to U12 would produce identical bounds. Next, we compute the cardinality of remaining

disturbances as usual. Here, U12 is left only to determine V1, meaning that it has a cardinality

of two. Finally, we return to the primary disturbance and determine its cardinality based on

main variables and remaining disturbances. In this example, after fixing U23, the variable V2

is a function of V1 and U12, both binary, meaning that U23 has a cardinality of sixteen.

Finally, Proposition 1 extends Evans (2018) by allowing us to develop generalized principal

strata for graphs that are non-geared, meaning that disturbances do not satisfy the running

intersection property.10 These cases differ only in that they contain cycles of confounding; after

breaking the cycle at any point, they can be dealt with in the same manner as geared graphs.

An example of a non-geared graph is given in Figure 2(c). Finkelstein et al. (2021) presents an

algorithm for constructing a generalized principal stratification for non-geared graphs. In brief,

the algorithm breaks the confounding cycle by selecting an arbitrary disturbance—e.g., U13—

and fixing its cardinality at a value that is guaranteed to be non-restrictive of the model over

9Note that if any main variable V has multiple parents inU , there may be multiple valid parameterizations—
i.e., methods for constructing generalized principal strata—depending on which disturbance is assigned primary
responsibility for determining which main variable. If each main variable has only a single parent in U , there
is only a single functional parameterization.

10Here, the running intersection property requires that there exists a total ordering of disturbances such that
the main variables touched by any Uk at most overlap with those touched by only one additional Uk′ < Uk. For
example, in Figure 2(c), if the ordering is U13 < U12 < U23, then U23 touches both V2 and V3. Thus, V2 and
V3 together can be influenced by at most one additional disturbance that is earlier in the ordering. This is not
the case, because U12 touches V2, U13 touches V3, and both U12 and U13 are prior to U23 in the ordering; thus,
the children of U23 are influenced by multiple prior disturbances. Furthermore, there exists no other ordering
that satisfies the requirement, so Figure 2(c) is non-geared. For further discussion, see Finkelstein et al. (2021)
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factual random variables, by Carathéodory’s theorem. In this case, based on U13’s district,11

{V1, V2, and V3}, U13 can be analyzed w.l.o.g. as if it had a cardinality of |S(V1) × S(V2) ×

S(V3)|−2. In all subsequent analysis of Figure 2(c), U13 would then treated as a main variable,

allowing the graph to be analyzed as if it were geared. As in Figure 2(b), U12 then determines

the response of V1 to U13. Finally, U23 jointly determines (i) the responses of V2 to V1 and

U12 as well as (ii) V3 to V1, V2, and U13. We note that the number of parameters involved in

non-geared graphs can quickly become intractable. In these cases, valid but possibly non-sharp

bounds can always be obtained by solving a relaxed problem in which a single disturbance is

connected to each main variable in a district, absorbing multiple disturbances that influence

only a subset of those variables (for example, adding a U123 that absorbs U12, U13, and U23).

In sum, all classes of discrete-variable DAGs can be parameterized in terms of generalized

principal strata. In what follows, we show how this representation allows us to reformulate

causal bounding problems in terms of polynomial programs that can be optimized over the

sizes of these strata, subject to constraints implied by assumptions and available data.

4 Formulating the polynomial program

We now turn to the central problem of this paper: sharply bounding causal quantities with

incomplete information. Our approach is to (i) rewrite the causal estimand into a polynomial

expression, (ii) rewrite modeling assumptions and empirical information into polynomial con-

straints, and (iii) thereby transform the task into a constrained optimization problem that can

be solved computationally. Appendix C.1 provides a detailed walkthrough of this process with

a concrete instrumental variable problem, along with example code that illustrates how the

above steps are automated by our software in merely eight lines of code.

Our goal is to obtain sharp bounds on the estimand, or the narrowest range that contain

all admissible values consistent with available information: structural causal knowledge in the

form of a canonical DAG, G; empirical evidence, E ; and modeling assumptions, A, formalized

below. Importantly, our definition of “empirical evidence” flexibly accommodates essentially

11Districts of a canonical graph are components that remain connected after removing arrows among V .
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Figure 2: Any discrete-variable DAG can be represented in terms of principal strata.
Panels (a–b) depict geared graphs. In (a), each main variable is influenced by only one distur-
bance. In (b), V2 is influenced by both U12 and U23. In (c), a non-geared graph with cyclical
confounding by U12, U23, and U13 is shown. For each case, the functional parameterizations—
representations of each graph in terms of principal strata–are illustrated below.

U1 U23

V1 V2 V3

(a)

U12 U23

V1 V2 V3

(b)

U12 U23

U13

V1 V2 V3

(c)

Functional parameterization of (a)
V1 has no main parents—it is deterministically assigned a value by the disturbance U1. Therefore, the
possible values of V1’s main parents are the empty set. V2 has one binary main parent and takes on binary
values, for a total of four possible response functions of the form {0, 1} 7→ {0, 1}. Finally, V3 takes in
two binary parents and produces a binary outcome, with sixteen possible response patterns of the form
{0, 1}2 7→ {0, 1}. The disturbance U23 determines the 4× 16 possible joint response functions of V2 and V3
and therefore must have a cardinality of 64.

Structural Eq. Response Func. Response Form Cardinality

V1 = f1(U1) f
(u1)
1 (∅) ∅ 7→ {0, 1} |S(U1)| = 21

V2 = f2(V1, U23) f
(u23)
2 (v1) {0, 1} 7→ {0, 1}

}
|S(U23| = 22 × 22

2

V3 = f3(V1, V2, U23) f
(u23)
3 (v1, v2) {0, 1}2 7→ {0, 1}

Functional parameterization of (b)
When a main variable (here, V2) is influenced by multiple disturbances (U12 and U23), an arbitrary distur-
bance is selected to represent its response function, while the remaining disturbances are treated as main
variables. We begin by allocating U12 to determine the response of V1, then treat U12 as a main variable
when analyzing V2. This leaves U23 to determine the response of V2 to both V1 and U12. In addition, as
before, U23 also determines the response of V3 to V1 and V2. Different disturbance allocations result in
identical bounds.

Structural Eq. Response Func. Response Form Cardinality

V1 = f1(U12) f
(u12)
1 (∅) ∅ 7→ {0, 1} |S(U12)| = 21

V2 = f2(V1, U12, U23) f
(u23)
2 (v1, u12) {0, 1} × S(U12) 7→ {0, 1}

}
|S(U23)| = 22×2 × 22

2

V3 = f3(V1, V2, U23) f
(u23)
3 (v1, v2) {0, 1}2 7→ {0, 1}

Functional parameterization of (c)
In non-geared graphs, confounding cycles are broken by selecting an arbitrary disturbance (here, U13) and
fixing its cardinality at a non-restrictive value, |S(V1)× S(V2)× S(V3)| − 2, based on the size of its district
(V1, V2, and V3). U13 is then treated as a main variable for all subsequent analysis. Following (b), U12 then
determines the response of V1 to U13. Finally, U23 jointly determines (i) the responses of V2 to V1 and U12

and (ii) V3 to V1, V2, and U13.

Structural Eq. Response Func. Response Form Cardinality

U13 = g13(∅) — ∅ 7→ S(U13) |S(U13)| = 23 − 2

V1 = f1(U12, U13) f
(u12)
1 (u13) S(U13) 7→ {0, 1} |S(U12)| = 22

3−2

V2 = f2(V1, U12, U23) f
(u23)
2 (v1, u12) {0, 1} × S(U12) 7→ {0, 1}

}
|S(U23)| =

22×2
23−2×

22
2×(23−2)V3 = f3(V1, V2, U13, U23) f

(u23)
3 (v1, v2, u13) {0, 1}2 × S(U13) 7→ {0, 1}



any data about the joint, marginal, or conditional distributions of the main variables.

We will suppose the main variables take on values in a known, discrete set, S = S(V ).

In this section, we will demonstrate (i) that {G, E ,A,S} restricts the admissible values of the

target quantity, and (ii) this range of observationally indistinguishable values can be recovered

by polynomial programming. The causal graph and variable space, G and S, together imply an

infinite set of possible structural equation models, each capable of producing the same full data

laws. By Proposition 1, w.l.o.g., we can consider a simple model in which (i) each counterfactual

main variable is a deterministic function of exogeneous, discrete disturbances; (ii) there are a

relatively small number of such disturbances; and (iii) disturbances take on a finite number

of possible values, corresponding to principal strata of the main variables. When repeatedly

sampling units (along with each unit’s random disturbances, U), the k-th disturbance thus

follows the categorical distribution with parameters PUk
= {Pr(Uk = uk) : uk ∈ S(Uk)}. By

the properties of canonical DAGs, these disturbances are independent. It follows that the

parameters PU of the joint disturbance distribution Pr(U = u) =
∏

k Pr(Uk = uk) not only

fully determine the distribution of each factual main variable under no intervention, Vj(∅)—

they also determine the counterfactual distribution of Vj(a) under any intervention a, as well

as its joint distribution with other counterfactual variables Vj′(a
′) under possibly different

interventions a′. This leads to the following proposition, proven in Appendix F.2.

Proposition 2. Suppose G is a canonical DAG and C` = {V`(a`) = v`} are counterfactual

statements, indexed by `, that variable V` will take on value v` under manipulation a`. Let

1
{
u⇒ {C` : `}

}
be an indicator function that evaluates to 1 if and only if disturbance realiza-

tions u = {u1, . . . , uK} deterministically lead to C` being satisfied for every `. Then under the

structural equation model G,

Pr

(⋂
`

C`

)
=

∑
u∈S(U)

1
{
u⇒ {C` : `}

} ∏
uk∈u

Pr(Uk = uk), (1)

which is a polynomial equation in PU , the probabilities Pr(Uk = uk).

For example, in the mediation setting of Figure 1(b), Proposition 2 implies that the joint

distribution of the factual variables—V1(∅), V2(∅), and V3(∅)—is given by
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Pr
(
V1(∅) = v1, V2(∅) = v2, V3(∅) = v3

)
=

∑
{u1,u23}∈U

Pr(U1 = u1) Pr(U23 = u23),

where U = {u : u ⇒ v} is the set of disturbance realizations that are consistent with a

particular V (∅) = v, in other words,

U =
{
{u1, u23} : f

(u1)
1 (∅) = v1, f

(u23)
2 (v1) = v2, f

(u23)
3 (v1, v2) = v3

}
.

Alternatively, analysts may be interested in the probability that a randomly drawn unit i

has a positive controlled direct effect when fixing the mediator to V2 = 0. This is given by

Pr
[
V3(V1 = 0, V2 = 0) = 0, V3(V1 = 1, V2 = 0) = 1

]
and is similarly expressed in terms of the

disturbances as
∑
{u1,u23}∈U ′ Pr(U1 = u1) Pr(U23 = u23), summing over a different subset of the

disturbance space, U ′ =
{
{u1, u23} : f

(u23)
3 (V1 = 1, V2 = 0) = 1, f

(u23)
3 (V1 = 0, V2 = 0) = 0

}
.

We now expand this result to include a large class of functionals of marginal probabilities

and logical statements about these functionals.

Corollary 1. Suppose G is a canonical DAG. Let PV denote the full data law and g1(PV ) de-

note a functional of PV involving elementary arithmetic operations on constants and marginal

probabilities of PV . Then g1(PV ) can be re-expressed as a polynomial fraction in the parameters

of PU , g2(PU ), by replacing each marginal probability with its Proposition 2 polynomialization.

We denote this replacement process with the operation polynomial-fractionalize [g1(PV )].

The corollary has a number of implications, which we discuss briefly. First, it shows that a

wide array of single-world and cross-world functionals can be expressed as polynomial fractions.

These include traditional quantities such as the ATE, as well as more complex ones such as the

pure direct effect and the probability of causal sufficiency. It also suggests any non-elementary

functional of PV can be approximated to arbitrary precision by a polynomial fraction, if the

functional has a convergent power series. We note that non-elementary functionals rarely arise

in practice, apart from logarithmic- or exponential-scale estimands.12 An example that our

approach cannot handle is the non-analytic functional 1{ATE is rational}.

A non-obvious implication of Corollary 1 is that when (i) g1(PV ) is an elementary arithmeti-

cal functional; (ii) 8 ∈ {<,≤,=, >,≥} is a binary comparison operator; and (iii) α is a finite

12Bounds on a monotonic transform of x can be obtained by bounding x, then applying the transform.

14



constant, then any statement of the form g1(PV ) 8 α can be transformed into a set of equiv-

alent non-fractional relations, {h`(PU , s) 9` 0 : `}. Here, each h`(·) denotes a non-fractional

polynomial in the parameters indicated; 9` is a possibly different binary comparison from 8;

and s are newly created auxiliary variables that are sometimes necessary. The transformation

proceeds as follows. First, g1(PV ) 8 α can be rewritten as g2(PU ) 8 α, by Proposition 1. Then,

note that any fractional g2(PU ) can be rewritten as some g3(PU )
h(PU )

in which g3(PU ) has fewer

fractions than g2(PU ). Regardless of whether h(PU ) is positive, negative, or of indeterminate

sign, it can be shown that h(PU ) can be cleared to obtain an equivalent relation. The exact

procedure differs for each case and, when h(PU ) is indeterminate, requires a set of auxiliary

variables, s, to be created.13 If all fractions have been cleared from g3(PU ), then the rewritten

statement is also of the promised form and we are done; otherwise, recurse. We denote this

transformation of the original statement—i.e., polynomial-fractionalizing its components and

then clearing all resulting fractions—as polynomialize [g1(PV ) 8 α].

By the same token, any estimand g(PV ) that is a polynomial-fractional g′(PU ) in the

parameters of PU can be re-expressed as a polynomial in the expanded parameter space,

h(PU , s), along with a set of additional polynomial relations. To see this, first define a new

estimand, s, which is a monomial (and hence a polynomial). This new estimand can be made

equivalent to the original one by imposing a new polynomial-fractional constraint, s−g(PV ) =

0. Any remaining fractions in the new constraint are cleared as above. We will make extensive

use of these properties to convert causal queries to polynomial programs.

Algorithm 2 provides a step-by-step procedure for formulating a polynomial programming

problem. Solving this program via Algorithm 3 then produces sharp bounds. Both algorithms,

given in Appendix B, mirror the discussion here with more formality. We begin by transform-

ing a factual or counterfactual target of inference T into polynomial form, possibly creating

13First, consider strictly positive h(PU ); here, g3(PU )−αh(PU ) 8 0 is equivalent to the original statement.
Second, consider strictly negative h(PU ): clearing the fraction yields g3(PU )− αh(PU ) 9 0, where 9 reverses
an inequality 8. Finally, in the case when h(PU ) can take on both positive and negative values, let an auxiliary
variable s ∈ s be defined such that s · h(PU )− 1 = 0, which is a polynomial relation of the promised form. It
can now be seen that the original statement is equivalent to s · g3(PU )−α 8 0. For a concrete example of how
auxiliary variables can be used to clear fractions, see Appendix C.1.3.
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additional auxiliary variables to eliminate fractions. To accomplish this task, the procedure

utilizes the possibly non-canonical DAG G and the variable space S(V ) to re-express T in

terms of functional parameters that correspond to principal strata proportions. The result

is the objective function of the polynomial program. The procedure then polynomializes the

sets of constraints resulting from empirical evidence and by modeling assumptions, respec-

tively denoted E and A. In Figure 2, if only observational data is available, then E consists

of eight pieces of evidence, each represented as a statement corresponding to a cell of the

factual distribution Pr
[
V1(∅) = v1, V2(∅) = v2, V3(∅) = v3

]
= Pr(V1 = v1, V2 = v2, V3 = v3)

for observable values in {0, 1}3. Modeling assumptions include all other information, such

as monotonicity or dose-response assumptions; these can be expressed in terms of principal

strata. For example, the assumed unit-level monotonicity of the V1 → V2 relationship (e.g.,

the “no defiers” assumption of Angrist et al., 1996) can be written as the statement that

Pr
(
V2(V1 = 0) = 1, V2(V1 = 1) = 0

)
= 0.14 Finally, the statement that each disturbance

k follows a categorical probability distribution is re-expressed as the polynomial relations

Pr(Uk = uk) ≥ 0 ∀ uk and
∑

uk
Pr(Uk = uk) = 1.

Algorithm 2 produces an optimization problem with a polynomial objective subject to

polynomial constraints. This polynomial programming problem is equivalent to the original

causal bounding problem. This leads directly to the following theorem.

Theorem 1. Minimization (maximization) of the polynomial program produced by Algorithm

2 produces sharp lower (upper) bounds on T under the sample space S(V ), structural equation

model G, additional modeling assumptions A, and empirical evidence E.

4.1 Example program for outcome-based selection

For intuition, consider the simple example in Figure 3, motivated by a hypothetical study of

discrimination in traffic law enforcement using (1) police data on vehicle stops and (2) traffic-

14Assumed population-level monotonicity is typically written E[V2(V1 = 1) − V2(V1 = 0)] ≥ 0, but can be
rewritten in terms of strata as Pr

[
V2(V1 = 1) = 1, V2(V1 = 0) = 0

]
− Pr

[
V2(V1 = 0) = 1, V2(V1 = 1) = 0

]
≥ 0.
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sensor data on overall vehicle volume. For illustrative purposes, suppose all drivers behave

identically. Here, X ∈ {0, 1} indicates whether a motorist is a racial minority and Y ∈ {0, 1}

whether the motorist is stopped by police. X and Y are assumed to be unconfounded. However,

there exists outcome-based selection: we only learn driver race (X) from police records if a

stop occurs (Y = 1), thus precluding point identification. Panels (a–d) in Figure 3 depict the

inputs to the algorithm: (a) the causal graph, G; (b) the observed evidence, E , consisting of

the marginal Pr(Y = y) and the conditional Pr(X = x|Y = 1); (c) additional assumptions, A,

such as a monotonicity assumption that white drivers are not discriminatorily stopped; and (d)

the sample space S(X, Y ). The target T is the ATE E[Y (x = 1)− Y (x = 0)], the amount of

anti-minority bias in stopping. Next, Figure 3(e) depicts functional parameterization in terms

of six disturbance partitions, following Section 3.3. Applying simplifications from Section 4.2

results in elimination of Pr(Y-defier) by assumption, then elimination of redundant strata that

complete the sum to unity, Pr(X-control) and Pr(Y-never). The problem can thus be reduced

to three dimensions. Next, the ATE is re-written as the probability of an anti-minority stop,

minus that of an anti-white stop (which is zero by assumption). Finally, Figure 3(f–i) depict

how each constraint narrows the space of potential solutions, leaving the admissible region

shown in Figure 3(i), the only part of the model space simultaneously satisfying all constraints.

Once formulated in this way, optimization proceeds by locating the highest and lowest

values of T within this region, which respectively represent the upper and lower bounds on

the ATE. A variety of computational solvers can in principle be used to minimize and maxi-

mize it.15 However, in practice, the resulting polynomial programming problem can be much

more complex than the simple case shown in Figure 3. For example, even seemingly simple

causal problems can result in nonconvex objective functions or constraints; moreover, both the

admissible region of the model space and the region of possible objective values can be discon-

nected.16 Local solvers thus cannot guarantee valid bounds without exhaustively searching the

15Throughout this paper, we will neglect the distinction between minimum (maximum) and infimum (supre-
mum), as is standard practice in numerical optimization.

16For example, the polynomial constraint x3−x2 < −0.1 would produce a disconnected admissible region of
x ∈ (−∞,−0.280] ∪ [0.413, 0.867]. Moreover, even connected admissible regions can produce disconnected sets
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Figure 3: Visualization of Algorithm 2. Constructing the polynomial program for a simple
bounding problem with outcome-dependent selection, motivated by a study of discrimination
in traffic law enforcement. Panels (a–d) depict inputs to the algorithm. The graph, G, contains
unconfounded treatment X and outcome Y . The evidence E contains (i) the marginal distribu-
tion of Y and (ii) the conditional distribution of X if Y = 1. A consists of a monotonicity as-
sumption. S states that X and Y are binary. The target T is the ATE E[Y (x = 1)−Y (x = 0)].
Panel (e) depicts functional parameterization with six disturbance partitions, following Sec-
tion 3.3. Applying simplifications from Section 4.2 results in elimination of Pr(Y-defier) by
assumption, then elimination of Pr(X-control) and Pr(Y-never) by the second axiom. Panels
(f–i) show constraints in the simplified model space.

(a) Graph G (b) Evidence E (c) Assumptions A (d) Space S

X Y

UX UY Pr(Y = y)

Pr(X = x|Y = 1)

Pr

[
Y (x = 0)
> Y (x = 1)

]
= 0

S(X) = {0, 1}
S(Y ) = {0, 1}

(e) Functional parameterization:

Structural Eq. Response Func. Response Form Partition Labels

X = fX(UX) f
(uX)
X (∅) ∅ 7→ {0, 1} X-control, X-treated

Y = fY (X,UY ) f
(uY )
Y (x) {0, 1} 7→ {0, 1}

{
Y-never, Y-defier
Y-complier, Y-always

(f) First axiom constraint (g) Pr(Y = y) constraint

(h) Pr(X = x|Y = 1) constraint (i) Combined constraints



space; when time is finite, these can fail to discover global extrema for the causal estimand,

resulting in invalid intervals that are not guaranteed to contain the quantity of interest.

4.2 Simplifying the polynomial program

The time needed to solve polynomial programs can grow exponentially with the number of

variables. To address this, in Appendix D, we employ various techniques that draw on graph

theory and probability theory to simplify polynomial programs into forms with fewer variables

that generally have identical solutions but are usually faster to solve. At a high level, these

simplifications fall into four categories. Appendix D.1 proposes a simplification that reduces

the degree of polynomial expressions. Using the graph’s structure, we show how to detect when

a disturbance Uk is guaranteed to be irrelevant, meaning its parameters only occur in contexts

where
∑

uk∈S(Uk) Pr(Uk = uk) can be factored out and replaced with unity. Appendix D.2

introduces a simplification that reduces the degree of polynomial expressions by exploiting

equality constraints like the simple Pr(X-control) + Pr(X-treated) = 1 example above. We

note some practical considerations when using symbolic algebra systems such as SageMath

(Stein et al., 2019), specifically about the computational efficiency of factoring out complex

polynomial expressions and replacing them with constants, as opposed to solving for one

variable in terms of others. Appendix D.3 discusses a broad class of simplifications that

reduce the number of constraints in the program, but with important tradeoffs. We show that

assumptions encoded in a DAG, such as the empty binary graph UX → X Y ← UY , allow

the empirical evidence to be expressed using fewer constraints—here, the reduction uses only

two pieces of information, Pr(X = 1) and Pr(Y = 1), exploiting the previously mentioned

equality constraints and the assumed independence of X and Y . This is a reduction from the

three pieces of information needed to convey Pr(X = x, Y = y),17 but comes at the cost that

of possible objective values; e.g., with the objective 1
x (which can be transformed to a polynomial objective,

as discussed on page 15), the constraint {−1 ≤ x ≤ 1} leads to possible objective values of (−∞,−1] ∪ [1,∞).
Note that discontinuity is a merely computational challenge rather than a conceptual issue, as the definition
of the bounds in this case would be

[
minx∈[−1,1]

1
x ,maxx∈[−1,1]

1
x

]
= (−∞,∞).

17Any one of the four cells can be automatically eliminated, as it is redundant given the implied constraint
that

∑
x,y Pr(X = x, Y = y) = 1 by construction of the principal strata.
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analysts can no longer falsify the independence assumption. Finally, Appendix D.4 provides

a simplification for detecting when constraints and parameters no longer bind the objective

function, meaning they can be safely eliminated from the program.

We caution that the practical application of these techniques remains an important area

for future research: applying these techniques in different orders, or even with slightly dif-

ferent software implementations, can produce optimization programs that are mathematically

equivalent but can vary substantially in runtime.

5 Computing ε-sharp bounds in polynomial programs

We now turn to the practical optimization of the polynomial program defined by Algorithm 2,

which we refer to as the primal program; see Figure 4(a) for an example. Per Theorem 1,

minimization and maximization of the polynomialized target, T (p), is equivalent to the causal

bounding problem. (Optimization is implicitly over the admissible region of the model space.)

We denote the sharp lower and upper bounds as T ≡ minp T (p) and T ≡ maxp T (p). As we

note above, the challenge is that these problems are often nonconvex and high dimensional,

meaning globally optimal solutions can be difficult to obtain. Conventional primal optimizers,

which iteratively improve suboptimal values, can be trapped in local extrema, failing to produce

valid bounds that contain all possible values of the estimand (including global extrema).

To address this challenge and guarantee the validity of reported bounds, our approach in-

corporates dual techniques that do not directly optimize the original primal objective function,

T (p). Instead, these techniques construct alternative objective functions that are easier to op-

timize; solutions to the easier dual problems can then be related back to the original primal

problems. In particular, we will construct piecewise linear dual envelope functions D(p) and

D(p) that satisfy D(p) ≤ T (p) ≤ D(p) for every p in the admissible region. An illustration is

given in Figure 4(b). In statistics, related techniques have found use in variational inference,

an approach that constructs an analytically tractable dual function that can be maximized in

place of the likelihood function (Jordan et al., 1999; Blei et al., 2017).18

18Variational inference uses an analytic relaxation to obtain a dual that lower-bounds the likelihood function
everywhere in the model space. Our approach diverges in that (i) we conduct two simultaneous dual relaxations
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Figure 4: Visualization of Algorithm 3. Computing ε-sharp bounds for the outcome-based
selection problem of Figure 3. Panel (a) shows how the target ATE varies over the feasible
region of the model space (reparameterized in terms of possible PU distributions) depicted
in Figure 3(i). Panel (b) depicts the first step of our method, partitioning of the model
space into branches within which computationally tractable, piecewise linear dual relaxations
are obtained. Panel (c) shows how suboptimal values of the primal function, obtained with
standard local optimizers, can be combined with the dual envelope to prune large regions of
the model space that cannot possibly contain the global extrema. In panel (d), the procedure
applied recursively. The pruned model space is rebranched and heuristic primal optimization
is repeated, potentially yielding narrower dual bounds and wider primal bounds, respectively.
The looseness factor, ε, narrows until reaching zero (sharpness) or a specified threshold.

(a) Primal function. Possible target esti-
mand values as function of feasible
disturbance distributions. Global ex-
trema are sharp bounds. Because
problems are often nonconvex, stan-
dard optimization can lead to local op-
tima and invalid bounds.

(b) Dual envelope. Model space is di-
vided into branches. Computationally
efficient piecewise linear relaxations
(curvewise bounds on primal) are ob-
tained in each branch. Extreme dual
values (hollow blue triangles) are valid
but possibly loose bounds on target.

(c) Primal refinement and pruning.
Heuristic optimization produces
suboptimal primal values (solid red
triangles). Dual envelope then iden-
tifies regions where higher and lower
primal values might be found.

(d) Dual refinement and recursion. Re-
maining model space is rebranched
and dual envelope is recomputed, po-
tentially leading to narrower reported
bounds. Heuristic primal optimization
is repeated, potentially widening pri-
mal bounds. ε is updated.



A key property of this envelope is that the easier-to-compute dual bounds, D ≡ minpD(p)

and D ≡ maxpD(p), will always bracket the unknown true sharp bounds. This is because

D(p) andD(p) are downward- and upward-shifted relaxations of the original objective function,

which can only lead to a lower minimum and higher maximum, respectively. The dual bounds

are thus guaranteed to be valid causal bounds. Viewed differently, the dual bounds
[
D,D

]
also represent outer bounds (where bounding addresses the computationally difficult task of

computing the global extrema) on the unknown sharp causal bounds
[
T , T

]
(where bounding

addresses the fundamental unknowability of the DGP). Here, a key consideration is that the

choice of a dual envelope determines the looseness, or the duality gaps T −D and D−T . Our

task therefore reduces to the question of how to evaluate the looseness of the dual bounds and,

if needed, to refine the envelope so that it leads to tighter dual bounds.

We now discuss our procedure for assessing the looseness of the dual bounds. To start,

note that for any admissible point in the model space, p, the corresponding value of the target

quantity, T (p), must satisfy T ≤ T (p) ≤ T by definition, even when the true sharp bounds are

unknown. This immediately suggests that for any collection of points {p,p′,p′′, . . .} within the

admissible region for we choose to evaluate T (·), the lowest and highest values discovered—

which we denote P and P—must also be contained within the sharp bounds. In other words,[
P , P

]
represents an inner bound on the unknown sharp bounds

[
T , T

]
. Therefore, for any

choice of dual envelope and any collection of evaluated points, we have D ≤ T ≤ P ≤

P ≤ T ≤ D. We evaluate the looseness of the reported dual bounds by taking the ratio of

the outer bounds’ excess width to the width of the inner bounds, ε ≡
(
D −D

)
/
(
P − P

)
− 1.

It can be seen that when P = D and P = D, then the reported dual bounds have provably

attained sharpness and ε = 0. However, ε > 0 does not necessarily imply that the dual bounds

are not sharp; for example, it may simply be that D = T , so the lower bound is sharp, but the

collection of points evaluated is insufficiently large, so that T < P and this sharpness cannot

to obtain an envelope—both lower and upper—for the original primal function; (ii) we computationally generate
piecewise dual functions, rather than analytically deriving smooth duals, and (iii) instead of working with a
fixed dual function, we generate a sequence of dual envelopes that iteratively tighten the duals.
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be proven. For this reason, we refer to ε as the worst-case looseness factor.

We are now ready to discuss how bounds are iteratively refined; a step-by-step procedure is

given in Algorithm 3 in Appendix B. Note that at the outset of the procedure, the initial dual

envelope may lie far from the true objective function, meaning ε will be large. We employ the

spatial branch-and-bound approach to recursively subdivide the model space and efficiently

search for regions in which the bounds may be improved. A variety of mature optimization

frameworks can be used to implement the proposed methods, including Couenne and SCIP

(Belotti et al., 2009; Vigerske and Gleixner, 2018); the key to Algorithm 3 is that the upper-

and lower-bounding optimization problems must be executed in parallel, so that the relative

looseness ε can be tracked over time. In addition to the polynomial program produced by

Algorithm 2, our procedure accepts two stopping parameters: εthresh, the desired level of

provable sharpness; and θthresh, the desired width of the bounds.19

Figure 4 illustrates the procedure for the outcome-based selection problem of Figure 3. The

algorithm receives the primal objective function, T (p), shown in Figure 4(a), as input. It then

partitions the parameter space into a series of branches, or connected subsets of the parameter

space. Separate partitions, B and B, are used for lower and upper bounding, respectively.

Within each branch b, a linear function δ0 + p>δ is constructed; easily computed properties

such as derivatives and boundary values are used to ensure that this plane lies above or below

T (p) for all admissible points in the branch.20 We collect these branch-specific bounds in

the piecewise functions D(p) ≡ {Db(p) if p ∈ Bb : b} and D(p) ≡
{
Db(p) if p ∈ Bb : b

}
, which

define the initial dual envelope shown with dashed blue lines in Figure 4(b). Because each

piece is linear, it is straightforward to compute the extreme points of the dual envelope within

each branch, Db = min {Db(p) : p ∈ Bb} and Db = max
{
Db(p) : p ∈ Bb

}
. The overall dual

19We include θthresh to address the possibility of point identification, in which case P − P = 0, finite εthresh

cannot be achieved, and algorithms based on this stopping criteria alone will not terminate.
20For example, consider the objective function T (x) = x2. Any tangent line is a valid lower dual function.

Moreover, within any interval [xa, xb], the secant line from (xa, T (xa)) to (xb, T (xb)) is a valid upper dual
function. A piecewise linear envelope can thus be constructed by proceeding one branch at a time, computing
derivatives (for example, at the branch midpoint) to obtain a branch-specific lower dual function Db(x) and
boundary values to obtain a branch-specific upper dual function Db(x).
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(outer) bounds are then D = minbDb and D = maxbDb, depicted with hollow blue triangles.

Next, the algorithm seeks to expand the primal (inner) bounds. Recall that these bounds,

[P , P ], are the minimum and maximum values of the target function that have been encoun-

tered in any set of admissible DGPs—regardless of how that set was constructed. We can

therefore use standard constrained optimization techniques to optimize the primal problem.

Various heuristics—e.g. initializing optimizers in regions that appear promising based on the

duals—can also be used. The fact that these techniques are only guaranteed to produce local

optima is not of concern, because primal bounds are used only for computational convenience.

Examples of two admissible primal points are shown with red triangles in Figure 4(c). These

primal bounds represent the narrowest possible causal bounds: the (unknown) sharp lower

bound T must satisfy T ≤ P , and similarly the sharp upper bound must satisfy P ≤ T .

This means entire swaths of the parameter space can now be ignored, greatly accelerating

the search. For example, in Figure 4(c), the upper dual function (upper dashed blue lines)

indicates that the rightmost three-quarters of the parameter space cannot possibly produce

a target value that is higher than P , the upper primal bound that has already been found

(upper solid red triangle). Therefore, optimization of the upper dual bound can focus on the

bracketed “subspace to search in next iteration.” Optimization of the lower dual bound only

need consider regions that D(p) indicates can produce lower values than P .

A new refined dual envelope can now be constructed by subdividing the remaining space

and recomputing tighter dual functions, as shown in Figure 4(d). The procedure is then

repeated recursively—the algorithm heuristically selects branches in the model space that

appear promising, then refines primal and dual bounds in turn. If a more extreme admissible

target value is found, it is stored as a new primal bound. Finally, the algorithm prunes branches

of B and B that cannot improve dual bounds or that wholly violate constraints. Optimization

terminates when either ε reaches εthresh or θ ≡ D−D reaches θthresh. For complex problems, the

time to convergence may be prohibitive. But because the dual function is always guaranteed to

contain the true objective function, the algorithm is anytime—the user can halt the program
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at any point and obtain valid (but potentially loose) bounds.

6 Statistical inference

We now briefly discuss how to modify Algorithm 3 to account for sampling error in the empirical

evidence used to construct bounds. A more rigorous formalization is provided in Appendix E.

Consider a simulated binary X → Y graph with confounding X ← UXY → Y . Up until

now, when discussing how empirical evidence constrains the admissible DGPs, we have only

considered population distributions of observable quantities—here, E =
{

Pr(X = 0, Y = 0) =

0.121, Pr(X = 1, Y = 0) = 0.346, Pr(X = 0, Y = 1) = 0.349, Pr(X = 1, Y = 1) = 0.184
}

.

When these population constraints are input to the algorithm, we refer to the results as the

population bounds. In practice, however, analysts only have access to noisily estimated versions;

with N = 1, 000, the sample analogues might respectively be 0.113, 0.352, 0.357, and 0.178.

By the plug-in principle, estimated bounds are obtained by supplying estimated constraints

instead. In other words, we apply the algorithm as if Pr(X = x, Y = y) = P̂r(X = x, Y = y).

Next, we propose two easily polynomializable methods to account for uncertainty from

sampling error. Our general approach is to relax empirical-evidence constraints: we say that

Pr(X = x, Y = y) must be near P̂r(X = x, Y = y), rather than equaling it. Our first

method is based on the “Bernoulli-KL” approach of Malloy et al. (2020), which constructs

separate confidence regions for each observable Pr(X = x, Y = y). For example, rather than

constraining Algorithm 3 to only consider DGPs exactly satisfying Pr(X = 0, Y = 0) = 0.121

as in the population bounds, or Pr(X = 0, Y = 0) = 0.113 as in the estimated bounds, we

instead allow it to consider any DGP in which 0.073 ≤ Pr(X = 0, Y = 0) ≤ 0.163. Thus, each

equality constraint in the original empirical evidence is replaced with two linear inequality

constraints; this is equivalent to constraining Pr(X = x, Y = y) to lie within a hypercube.

Our second method is based on the multivariate Gaussian limiting distribution of the

multinomial proportion (Bienaymé, 1838). This approach will essentially say that Pr(X =

x, Y = y) is constrained to lie within an ellipsoid, rather than a hypercube. Let Ê be a
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vector collecting
[
P̂r(X = 0, Y = 0), P̂r(X = 1, Y = 0), P̂r(X = 0, Y = 1)

]
.21 We then

compute a confidence region for the distribution N
(
Ê, 1

N
diag(Ê)− 1

N
ÊÊ>

)
. This replaces

all of the original equality constraints with a single quadratic inequality constraint of the

form
(
Ê −E

)> (
1
N

diag(Ê)− 1
N
ÊÊ>

)−1 (
Ê −E

)
≤ z, where E =

[
Pr(X = 0, Y = 0),

Pr(X = 1, Y = 0), Pr(X = 0, Y = 1)
]

and z is some critical value of the χ2 distribution.

Specifics of the calculations are given in Appendix E. These confidence regions for the

empirical quantities aim to jointly cover Pr(X = x, Y = y) for every x and y in at least

1−α of repeated samples (the Bernoulli-KL method guarantees conservative coverage in finite

samples, whereas the Gaussian method offers only asymptotic guarantees). When this holds,

confidence bounds obtained by optimizing subject to the relaxed empirical constraints are

guaranteed to have at least 1− α coverage of the population bounds. In Section 7.2, we show

that empirically, confidence bounds obtained from both methods are conservative.

7 Simulated examples

7.1 Instrumental variables

Noncompliance with randomized treatment assignment is a common obstacle to causal infer-

ence. Balke and Pearl (1997) showed that bounds on the ATE under noncompliance can be

obtained via linear programming. However, that approach cannot be used to bound the local

ATE (LATE) among “compliers” because this quantity is nonlinear. Angrist et al. (1996)

shows the LATE can be point identified if certain conditions hold—including, notably, (i) the

absence of a direct effect of treatment assignment Z on the outcome Y ; and (ii) monotonicity,

or the absence of “defiers” in which actual treatment X is the inverse of Z.22 Because these

may not be satisfied in practice, Figure 5 shows three possible sets of assumptions that analysts

may make: (a) neither; (b) the former but not the latter; and (c) both. We simulate a true

DGP corresponding to panel (b), in which no-direct-effect holds but monotonicity is violated.

The true ATE is −0.25 and the true LATE is −0.36. We will suppose analysts have access to

21To avoid degeneracy issues, one empirical quantity is excluded, as it must sum to unity.
22Other conditions include ignorability of Z and a non-null effect of Z on X.
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the population distribution Pr(Z = z,X = x, Y = y); inference is discussed in Section 7.2.

Figure 5: DGPs with noncompliance. Three possible scenarios involving encouragement Z,
treatment X, and outcome Y . Panel (b) represents the true simulation DGP, where Z → X
monotonicity is violated (indicated by absence of a +). Panel (a) depicts a “overcautious”
analyst unwilling to assume away a direct Z → Y effect. Panel (c) depicts an “overconfident”
analyst that incorrectly assumes monotonicity of Z → X.

Omitted assumption
(overcautious)

U

Z X Y

(a)

Justified assumptions
(true DGP)

U

Z X Y

(b)

Erroneous assumption
(overconfident)

U

Z X Y
+

(c)

An overcautious analyst might be unwilling to rule out a direct Z → Y effect or de-

fiers in Z → X, making only assumptions shown in panel (a). Applying our method yields

bounds of [−0.63, 0.37] and [−1, 1] for the ATE and LATE, respectively—sharp, but unin-

formative in sign. With an additional no-direct-effect assumption, per panel (b), they would

instead obtain ATE bounds of [−0.55,−0.15], revealing a negative effect and correctly con-

taining the true ATE, −0.25. However, LATE bounds remain at [−1, 1]; as compliers cannot

be identified experimentally, this quantity is difficult to learn about without strong assump-

tions. Finally, an overconfident analyst might mistakenly make an additional monotonicity

assumption. Helpfully, when asked to produce bounds, Algorithm 3 reports the causal query

is infeasible—meaning that it cannot locate any DGP consistent with data and assumptions.

This clearly warns that the causal theory is deficient. If the analyst näıvely applied the tra-

ditional two-stage least squares estimator, they would receive no such warning. Instead, they

would obtain an erroneous point estimate of −0.74, roughly double the true LATE of −0.36.

7.2 Coverage of confidence bounds

We now evaluate the performance of confidence bounds that characterize uncertainty due to

sampling error, constructed according to Section 6 and Appendix E, using the instrumental

variable model of Figure 5(b). Specifically, we draw samples of N = 1, 000, N = 10, 000,

or N = 100, 000 observations from this DGP. For each sample, we then use the empirical

proportions 1
N

∑
i 1{Zi = z,Xi = x, Yi = y} for all x, y, z ∈ {0, 1}. These eight quantities form
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the basis of estimated bounds, by the plug-in principle. To quantify uncertainty, we compute

95% confidence regions on the same observed quantities, then convert them to polynomial

constraints for inclusion in Algorithm 3. Optimizing subject to these confidence constraints

produces confidence bounds, depicted in Figure 6. For each combination of sample size and

uncertainty method, we draw 1,000 simulated datasets and run Algorithm 3 on each.

Table 1 reports average values of estimated lower (upper) confidence bounds obtained

by Algorithm 3 over 1,000 simulated datasets, for varying N . At all sample sizes, estimated

bounds are centered on population bounds. Figure 13 shows confidence bounds obtained across

methods and sample sizes. The Bernoulli-KL method produces wider confidence intervals at

all N ; at N = 1, 000, it is generally unable to reject zero, whereas the asymptotic method

does so occasionally. Differences in interval width persist but shrink rapidly as sample size

grows and both methods collapse on population bounds. As discussed in Section 6, we find

more conservative coverage for confidence bounds on the ATE (100% coverage of population

bounds), compared to coverage of the underlying confidence regions on the observed quantities

(95% joint coverage of observed population quantities for the asymptotic method).

Table 1: Bias of estimated bounds. Average estimated bounds simulated datasets of
varying size. Average estimated bounds correspond closely to population bounds.

Quantity N = 1, 000 N = 10, 000 N = 100, 000 Population
Lower bound −0.5497 −0.5498 −0.5500 −0.5502
Upper bound −0.1453 −0.1455 −0.1459 −0.1460

7.3 More complex bounding problems

We now examine four hypothetical DGPs, shown in Figure 7, featuring various threats to

inference. Throughout, we target the ATE of X on Y . Panel (a) illustrates outcome-based

selection: we observe unit i only if S = 1, where S may be affected by Y . Selection severity,

Pr(S = 0), is known, but no information about Pr(X = x, Y = y|S = 0) is available. X and Y

are also confounded by unobserved U . Bounding in this setting is a nonlinear program, with an

analytic solution recently derived in Gabriel et al. (2022). Panel (b) illustrates measurement

error: an unobserved confounder U jointly causes Y and its proxy Y ∗, but only treatment and
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Figure 6: Coverage of confidence bounds. Each of 1,000 simulations is depicted with a
horizontal line. For each simulation, a horizontal error bar represents a 95% confidence bound
obtained per Section 6. All confidence bounds fully contain the population bounds, indicating
100% coverage. The upper (lower) row of panels reflect confidence bounds obtained with
the Bernoulli-KL (asymptotic) method. Columns of panels report confidence bounds obtained
using samples of various sizes. Vertical dotted gray lines show true population lower and upper
bounds, which contain the true ATE of −0.25; vertical dashed black lines indicate zero.
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the proxy outcome are observed. Bounding in this setting is a linear problem. A number of

results for linear measurement error were recently presented in Finkelstein et al. (2020); here,

we examine the monotonic errors case, where Y ∗(Y = 1) ≥ Y ∗(Y = 0). Panel (c) depicts

missingness in outcomes, i.e. nonresponse or attrition. Here, X affects both the partially

observed Y and response indicator R; if R = 1, then Y ∗ = Y , but if R = 0, then Y ∗ takes

on the missing value indicator NA. Nonresponse on Y is differentially affected by both X

and the value of Y itself (i.e. “missingness not at random,” MNAR); Manski (1990) provides

analytic bounds. Finally, panel (d) depicts joint missingness in both treatment and outcome—

sometimes a challenge in longitudinal studies with dropout—with MNAR on Y .

Figure 8 illustrates how Algorithm 3 recovers sharp bounds. Each panel shows progress in

time. Primal bounds (blue) can widen over time if more extreme, observationally equivalent

models are found. Dual bounds (red) narrow as the outer envelope is tightened. Our method

simultaneously searches for more extreme primal points and narrows the dual envelope. An-

alysts can terminate the process at any time, reporting guaranteed-valid dual bounds along
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Figure 7: Various threats to inference. Panels depict (a) outcome-based selection, (b)
measurement error, (c) nonresponse and (d) joint missingness. In each graph, X and Y are
treatment and outcome, respectively. Dotted red regions represent observed information. In
(a), the box around S indicates selection: other variables are only observed conditional on
S = 1. In (b), Y ∗ represents a mismeasured version of the unobserved true Y . In (c), RY

indicates reporting, so that Y ∗ = Y if R = 1 and is missing otherwise. In (d), both treatment
and outcome can be missing; and missingness on X can affect missingness on Y .
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X Y S
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UX

Y Y ∗
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X RX X∗
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with their worst-case suboptimality factor, ε—or await complete sharpness, ε = 0.

Figure 8: Computation of ATE bounds. Progress of Algorithm 3 for simulation data from
DGPs depicted in Figure 7(a–d). Black error bars are known analytic bounds, y-axes are ATE
values, and x-axes are runtimes of Algorithm 3. Red regions are dual bounds, which always
contain sharp bounds and the unknown true causal effect; these can only narrow over time,
converging on optimality. Blue regions are primal bounds, which can only widen over time
as more extreme models are found. Optimization stops when primal and dual bounds meet,
indicating bounds are sharp. Prior analytic bounds are sharp for problems (a–c). In setting
(d), Algorithm 3 achieves point identification, but Manski (1990) bounds do not.
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In Figure 8(a–c), the algorithm converges on known analytic results. Ultimately, in the

selection simulation (a), Algorithm 3 achieves bounds of [−0.50, 0.64], correctly recovering

Gabriel et al.’s (2022) analytic bounds; in (b), measurement error bounds are [−0.62, 1.00],

matching Finkelstein et al. (2020); and in (c), outcome missingness bounds are [−0.25, 0.75],

equaling Manski (1990) bounds. Somewhat counterintuitively, Figure 8(d) shows dual bounds

collapsing to a point, eventually point-identifying the ATE at −0.25 despite severe missingness.

This surprising result turns out to be a special case of an approach using “shadow variables”

developed by Miao et al. (2016).23 This example illustrates the algorithm is general enough to

recover results even when they are not widely known in a particular model; note the commonly

used approach of Manski (1990) produces far looser bounds of [−0.72, 0.40], failing to exploit

causal structure given in Figure 7(d). This result suggests our approach enables an empiri-

cal investigation of complex models where general identification results are not yet available.

Situations where bounds converge suggest models where point identification via an explicit

functional may be possible, potentially enabling new identification theory.

8 Potential critiques of the approach

Below, we briefly discuss several potential critiques of our method.

“The user must know the true causal model.” This is false; users do not need to assert

a faulty “complete” model, but rather only what they know or believe. Our approach simply

derives the conclusions that follow from data and those transparently stated assumptions.

“The bounds will be too wide to be informative.” This is no tradeoff: faulty point esti-

mates based on faulty assumptions are also uninformative. When sharp bounds incorporating

all defensible assumptions are wide, it merely means progress will require more information.

“What about continuous variables?” Discrete approximations often suffice in applied

work. If continuous treatments only affect discrete outcomes when exceeding a threshold, dis-

cretization is lossless. Future work may study discrete approximations when effects are smooth.

23Specifically, it can be shown the ATE is identified for the Figure 7(d) graph only among faithful distributions
where X → Y is non-null—i.e. almost everywhere in the model space.
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“The bounds will take too long to compute.” Achieving ε = 0 may sometimes take

prohibitive time, but our approach remains faster than manual derivation. Figure 8 shows

that several recently published results were recovered in mere seconds. Moreover, our anytime

guarantee ensures that premature termination will still produce valid bounds.

9 Conclusion

Causal inference is a central goal of science, and many established techniques can point-identify

causal quantities under ideal conditions. But in many applications, these conditions are sim-

ply not satisfied, necessitating partial identification—yet few tools for obtaining these bounds

exist. For knowledge accumulation to proceed in the messy world of applied statistics, a gen-

eral solution is needed. We present a tool to automatically produce sharp bounds on causal

quantities in settings involving discrete data. Our approach involves a reduction of all such

causal queries to polynomial programming problems, enables efficient search over observation-

ally indistinguishable DGPs, and produces sharp bounds on arbitrary causal estimands. This

approach is sufficiently general to accommodate essentially every classic inferential obstacle.

Beyond providing a general tool for causal inference, our approach aligns closely with

recent calls to improve research transparency by explicitly declaring estimands, identifying

assumptions, and causal theory (Miguel et al., 2014; Lundberg et al., 2021). Only with a

common understanding of goals and premises can scholars have meaningful debates over the

credibility of research. When aspects of a theory are contested, our approach allows for a

fully modular exploration of how assumptions affect empirical conclusions. Scholars can learn

whether assumptions are empirically consequential, and if so, craft a targeted line of inquiry to

probe its validity. Our approach can also act as a safeguard for analysts, flagging assumptions

as infeasible when they conflict with observed information.

Among other challenges, our method is not immune to universal issues in causal inference

such as the difficulty of knowing the correct causal structure. Other obstacles relate to com-

putation time for complex problems, an important avenue for future research. While we do

supply a method to characterize the looseness of non-sharp bounds, future work should seek to
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reduce computation time for sharp bounds, especially when incorporating point-identified sub-

quantities or additional semi-parametric modeling approaches. Causal inference scholars may

also use this method as an exploratory tool to aid in the discovery of new identification theory.

These lines of inquiry now represent the major open questions in discrete causal inference.
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A Glossary of terms

A.1 Bounding terms

• Sharp bounds. The narrowest range that contain all values of the target quantity that
are admissible, or consistent with available information.

• Primal function. The target quantity, expressed as a function of the unknown param-
eters, or principal strata sizes.

• Primal bounds. The minimal and maximal admissible values of the target quantity
discovered thus far in the bounding process (corresponding to possible parameter values,
or principal strata sizes, that are consistent with available information).

• Dual function (lower and upper). A relaxation of the primal function; i.e., an auxil-
iary function that provably takes on lower (higher) values than the minimum (maximum)
values of the primal function at all points in the model space.

• Dual envelope. The region enclosed by the lower and upper dual functions.

• Dual bounds. The minimal point on the lower dual function and the maximal point
on the upper dual function.

• ε-sharpness. One minus the ratio of (i) the dual bounds width to (ii) the primal
bounds width. This represents a worst-case looseness factor, quantifying how much the
current (potentially non-sharp) bounds could potentially be improved with additional
computation.

• Empirical evidence. A set of constraints, one for each observable quantity, that relates
the value of that quantity to a function of the unknown parameters (principal strata
sizes).

• Modeling assumptions. Assumed restrictions, such as monotonicity, on how a main
variable responds to counterfactual manipulation of its causal parents.

• Elementary arithmetic operations. Addition, subtraction, multiplication, and divi-
sion.

• Population bounds. Bounds for a quantity assuming infinite data, i.e., without as-
suming sampling.

• Estimated bounds. Calculated bounds assuming finite data (sampling).

• Confidence bounds. Estimated bounds that must cover population bounds with a
probability α.

• Population constraints. Constraints of a causal problem when one assumes infinite
data.

• Estimated constraints. Constraints of a causal problem when one assumes finite data
(sampling).

• Confidence constraints. Constructed constraints that must cover population con-
straints with probability α.
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A.2 Computational terms

• Auxiliary variable. Parameters added to an optimization problem with the goal of
aiding simplification. They are used here for the purpose of eliminating fractions to
produce polynomials.

• Co-occurrence (of parameters). In a polynomial program, two parameters x and y
are said to co-occur if they appear in the same constraint.

• Constraint set. Inequalities and equalities that constrain the admissible values of the
optimization variables.

• Interaction (of parameters). In a polynomial program, two parameters x and z are
said to interact if there exists a sequence of parameters starting with x and ending in z
in which every adjacent pair co-occurs (defined above). For example, x and z interact if
x co-occurs with y and y co-occurs with z.

• Linear programming. A class of optimization problems in which the objective func-
tions and all constraints are expressed as linear functions of the optimization variables.

• NP. The class of problems solvable by a nondeterministic Turing machine in polynomial
time (see below).

• NP-hard. The class of problems that are as hard as the hardest problems in NP .

• Numerical optimization. An approach to optimization that returns numerical solu-
tions (in contrast to symbolic optimization).

• Polynomial time. Property of an algorithm indicating that worst-case computation
time grows at most as a polynomial function of the size of the number of inputs.

• Polynomial programming. A class of optimization problems in which the objective
function and all constraints are expressed in terms of polynomials of the optimization
variables.

• Relaxation. The transformation of an original problem to another one which is easier
to solve. For example, under certain conditions, parts of a polynomial program can be
approximated by a linear one.

• Symbolic optimization. An approach to optimization that returns symbolic solutions
in terms of the original parameters.

• Objective function. The function to maximize or minimize in an optimization problem.

A.3 Causal terms

• Always-taker. See principal strata.

• Ancestor. Given a vertex V in a graph G containing directed edges, an ancestor of V
is either V itself or any vertex W with a directed path to V .

• Blocking. A disturbance Uk is blocked from a main variable Vj by an intervention set
A if all directed paths from Uk to Vj pass through A.

• C-component. A synonym for “district,” defined below.
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• Canonical model. A canonical model is a probabilistic model where the stochastic
part of each variable is partitioned into partially applied response functions, or principal
strata, w.l.o.g. For example, canonicalization of X → Y indicates transformation into
an alternative model where the stochastic part of X is partitioned into Pr(X = 0) and
Pr(X = 1) and of Y into Pr[Y (X = 0) = 0, Y (X = 1) = 0], Pr[Y (X = 0) = 1, Y (X =
1) = 0], Pr[Y (X = 0) = 0, Y (X = 1) = 1], and Pr[Y (X = 0) = 1, Y (X = 1) = 1]

• Canonical partition. See canonical model.

• Complier. See principal strata.

• Cross-world (event or distribution). An event or distribution involving counterfac-
tual values of variables under an inconsistent set of interventions, such as Pr[Y (X = 0) =
0, Y (X = 1) = 0]. See also single-world marginal distribution.

• Defier. See principal strata.

• Directed path (from W to V ). A sequence of connected directed edges exclusively
pointing away from W and toward V .

• District. Given a graph G containing main variables V and disturbances U , and a
modified graph G ′ in which all edges from any Vj to any other Vj′ are deleted, a district
is a maximal connected set of vertices in G ′. In other words, a district consists of a
maximal set of vertices forming a spanning tree in G ′. Districts always form a partition
of vertices V ∪U . A synonym for “C-component.”

• Full data law. In causal or missing-data models, the joint distribution over all factual
and counterfactual variables relevant to the problem. This is contrasted with the observed
data distribution, which is a joint distribution over only observed variables. For example,
given binary X → Y , the full data law consists of Pr[X = x, Y (X = 0) = y, Y (X = 1) =
y′]. The observed data law is Pr(X = x, Y = y).

• Geared graph. A geared canonical graph G is a canonical graph that satisfies the
running intersection property, defined below. Loosely speaking, geared graphs are those
that lack particular kinds of cyclical confounding. In Figure 2, panels (a–b) are geared,
whereas panel (c) is non-geared because it contains the cycle U13 → V1 ← U12 → V2 ←
U23 → V3 ← U13. In the present context, the running intersection property requires that
there exists a total ordering of disturbances such that if a disturbance Uk touches any
main variables that are also touched by any earlier disturbance in the ordering—letting
V intersection ⊆ V denote these main variables—then the entire collection V intersection can
be influenced by at most one prior disturbance. That is, the main variables touched
by Uk can at most overlap with those touched by only one additional Uk′ < Uk. The
existence of this ordering is what allows the cycle of confounding to be broken and a
simple principal stratification to be constructed.

For example, in Figure 2(c), if the ordering is U13 < U12 < U23, then U23 touches both V2

and V3. Thus, V2 and V3 together can be influenced by at most one additional disturbance
that is earlier in the ordering. This is not the case, because U12 touches V2, U13 touches
V3, and both U12 and U13 are prior to U23 in the ordering; thus, the children of U23 are
influenced by multiple prior disturbances. Furthermore, there exists no other ordering
that satisfies the requirement, so Figure 2(c) is non-geared.

• Generalized equality constraints. See Verma constraints.
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• Instrumental inequality. A restriction imposed on the observed marginal distribu-
tion by a hidden-variable DAG model corresponding to the instrumental variable model,
shown in Figure 5(b). Valid instruments must satisfy this inequality. This inequality
may be stated as follows: maxx

∑
y [maxz Pr(X = x, Y = y | Z = z)] ≤ 1.

• Nested Markov parameterization. An alternative representation of the observed-
data distribution from a DAG with hidden disturbances. This alternative representation
is specifically designed to eliminate redundant information. An example of redundance
is providing both Pr(A1 = 0) and Pr(A1 = 1) for binary A1; because the second piece
of information is already implied by the fact that A1 is binary, it can be omitted from
the polynomial program w.l.o.g. The nested Markov parameterization is obtained by
factorizing the observed-data distribution, such as the example Pr(A1 = a1, L1 = l1, A2 =
a2, L2 = l2) of Appendix C.4, into a minimal number of observed quantities such as
Pr(A1 = 0), Pr(L1 = 0|A1 = a1),

∑
a1

Pr(A2 = 0|L1 = l1, A1 = 0) Pr(A1 = 0), and so
on. When complete, this factorization can be used to fully reconstruct the original joint
distribution of the observed data.

The factorization is based on the Möbius parameterization of the nested Markov model.
These parameterizations are known for nested Markov models for categorical and Gaus-
sian data. The procedure for obtaining the nested Markov factorization when all variables
are binary is described in Appendix C.4. A detailed illustration of its use is provided in
Appendix C.3.

• Never-taker. See principal strata.

• Non-geared graph. Any graph that is not geared. See geared graph.

• Nonrestrictive disturbance cardinality. Consider a disturbance U12 with unre-
stricted sample space S(U12) that influences main variables V1 and V2. A core goal
of this paper is to show that S(U12) can partitioned according to the principal stra-
tum assignments for V1 and V2 that it implies, or equivalently, that U12 can be reduced
into a categorical random variable with categories corresponding to these partitions. A
nonrestrictive disturbance cardinality is a number of partitions or categories such that
this transformation of U12 is w.l.o.g. for the resulting joint distribution of factual and
counterfactual values for V1 and V2. For example, if V1 has two principal strata and V2

has four, U12 must have a cardinality of eight in order to reproduce any possible joint
distribution of principal strata for V1 and V2.

• Parent. Given a vertex V in a graph G containing directed edges, a parent of V is any
vertex W with a directed edge from W to V .

• Partial application. For a function f(x, y), the partial application of a parameter x
fixes one input and yields an alternative function f (x)(y) that maps the reduced domain
y to the range of the original f(x, y). For example, if f(x, y) = xy, then the partial
application of x = 2 yields f (x=2)(y) = 2y.

• Principal strata. Classifications of units on the basis of their joint counterfactual
responses. For example, given a single treatment binary treatment X and a single binary
response Y , there are four such counterfactual responses:

– Never-takers: Y (X = 0) = 0, Y (X = 1) = 0.

– Defiers: Y (X = 0) = 1, Y (X = 1) = 0.
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– Compliers: Y (X = 0) = 0, Y (X = 1) = 1.

– Always-takers: Y (X = 0) = 1, Y (X = 1) = 1.

These names were given in the context of analysis of compliance in randomized trials,
where X represents assignment of an individual to either treatment or control group, and
Y represents whether the person in fact took the treatment or not. Note that since these
four groups represent joint counterfactual responses, membership of particular individuals
in these groups is not identifiable from observed data in typical settings.

In the presence of multiple treatments, principal strata may be appropriately generalized
into a set consisting of all possible joint counterfactual responses. Principal strata have
many applications in causal modeling. In the context of this paper, principal strata
or their generalizations may be used to formulate the minimum cardinality of hidden
disturbances in a causal model that does not impose any restrictions on any observed
margin of the model.

• Response function. A partially applied structural equation. Synonym for “principal
strata.”

• Single-world marginal distribution. A marginal of the full data distribution where
every variable either is not affected by treatments, or is a response to a consistent as-
signment of values to treatments by means of an intervention operation. For example, in
the binary instrumental variable model of Figure 5(b), the full data law over all factual
and counterfactual variables is Pr[Z = z,X(Z = 0) = x,X(Z = 1) = x′, Y (X = 0) =
y, Y (X = 1) = y′]. Two single world marginal distributions are Pr[Z = z, Y (X = 0) = y]
and Pr[Z = z, Y (X = 0) = y], both involving intervention on X. Note that both of these
distributions involve either variables that occur prior to intervention, such as Z, or re-
sponses to a single intervention. The full data distribution itself is not a single world
distribution, since it contains both Y (X = 0) and Y (X = 1), which are responses of Y
to different, inconsistent value assignments to the treatment X.

• Structural causal model. A causal model of a data-generating process. A structual
causal model is a structural equation equipped with the additional assumption that all
εUk

and εVj terms are mutually independent. See also structural equation model.

• Structural equation model. A causal model of a data-generating process. A structural
equation model is a structured system composed of a set of variables U ∪ V in which
every Uk ∈ U and every Vj ∈ V is determined from (i) values of its parents, another
subset pa(Uk) ⊆ U ∪ V \ Uk or pa(Vj) ⊆ U ∪ V \ Vj, and (ii) an additional εUk

or εVj
term. This determination is done by means of functions of the form Uk = fUk

[pa(Uk), εUk
]

and fVj [pa(Vj), εVj ]. The functions fUk
(·) and fVj(·) are called structural equations. It is

assumed that some of these functions may be altered to instead be constant functions,
outputting values vj for Vj. Such a replacement operation is called an intervention, or
manipulation.

Many structural models are assumed to be acyclic, meaning that there exists a total
order on V such that for every Vj ∈ V , no variable later in the order than Vj takes part
in pa(Vj).

• Verma constraints. A synonym for generalized independence constraints. These con-
straints are additional equality relationships that can implied by hidden-variable DAG
models, beyond the conditional independences encoded in the DAG.
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A standard example of a Verma constraint is that the function
∑

l1
Pr(L2 = l2 | A2 =

a2, L1 = l1, A1 = a1) Pr(L1 = l1 | A1 = a1) is not a function of A1 if Pr(A1 = a1, L1 =
l1, A2 = a2, L2 = l2) is a marginal distribution obtained from a joint that factorizes with
respect to a DAG in Figure 11 (a). The nested Markov model is defined by conditional
independences and Verma constraints.

B Algorithms

B.1 Algorithm 1: Canonicalization of DAGs, with discussion

In Algorithm 1, we formally state a procedure for obtaining a canonical hidden variable DAG

(Definition 4.6 in Evans, 2016). Theorem 4.13 of the same work shows that the marginal model

of any hidden variable DAG is the same as that of its canonical hidden variable DAG, and

Proposition 7.4 shows that the same holds for the model for post-intervention distributions,

when interventions are restricted to the main variables. For simplicity, we will use the generic

Xj to refer to any node in a hidden-variable DAG G, including both disturbances U or main

variables V .

Before proceeding to Algorithm 1, we will state the canonicalization procedure informally

and provide some intuition. Canonicalization proceeds in three steps. First, we take any

indirect effect Xj → . . .→ Xj′ that flows solely through hidden disturbances U , then collapse

it into the direct effect Xj → Xj′ . This is without consequence because by definition, analysts

are not interested in reasoning about hidden disturbances—including how effects are mediated

through them—except insofar as these disturbances affect the main variables. Second, we

remove any effects that nodes have on disturbances. This can be done, even with complex

networks of effects between disturbances, because the first step means that the role of any

disturbance can be subsumed by its oldest ancestor. Thus, by construction, all latent variables

in the resulting canonical DAG will be exogenous. Finally, as a consequence of the first

and second steps, any disturbance can be eliminated without consequence if its role can be

subsumed by another, more expressive disturbance.
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Algorithm 1 DAG Canonicalization

Input: graph G
Output: canonical graph G′

Collapse effects that flow through disturbances
1: for variable pair {Xj , Xj′} ∈ U ∪ V do
2: if there exists a path Xj → · · · → Xj′ such that all intermediate variables are disturbances
3: (e.g., Xj → Uk → Xj′ , Xj → Uk → Uk′ → Xj′) then

add edge Xj → Xj′

Exogenize disturbances
4: for disturbance Uk ∈ U and node Xj ∈ U ∪ V do
5: if edge Xj → Uk exists then

remove edge Xj → Uk

Eliminate extraneous disturbances
6: for disturbance pair {Uk, Uk′} ∈ U do

define children ch(Uk) = {Vj : Uk → Vj exists} and ch(Uk′) = {Vj : Uk′ → Vj exists}
7: if ch(Uk) ⊂ ch(Uk′) then

delete Uk

Obtain canonicalized graph
8: return modified G

B.2 Algorithm 2: Constructing polynomial programs

Algorithm 2 Constructing a polynomial program

Input: graph G, evidence E , assumptions A, sample space S(V ), target T
Output: polynomial program in parameters PU or PU ∪ s

Initialization
initialize empty constraint set C ← ∅
G ← canonicalize G
PU ← parameters of functional model for G
Polynomialize objective function
T ← polynomial-fractionalize(T )

1: if T contains fractions then
polynomialize(T = s) and append to C
T ← s

Polynomialize constraints
2: for

(
g(PV ) 8 α

)
∈
(
E ∪ A

)
do

polynomialize
(
g(PV ) 8 α

)
and append to C

3: for Uk ∈ U do
append

(
PUk

is a distribution
)

to C

Optimize
4: return optimize T subject to C
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B.3 Algorithm 3: Computing ε-sharp Bounds

Algorithm 3 Computing ε-sharp Bounds

Input: parameter space P, target T (p) and constraint set {C`(p) : `} in parameters p ∈ P,
stopping thresholds εthresh and θthresh

Output: lower bound D, upper bound D, maximum looseness factor ε

Initialization
Partitions B ← {P}, B ← {P}, initially with b = 1 branch each
Dual functions D(p)← {Db(p) = −∞ if p ∈ Bb : b}, D(p)←

{
Db(p) = +∞ if p ∈ Bb : b

}
Primal bounds: P ← +∞, P ← −∞
Bounds width θ ← +∞, looseness factor ε← +∞
Spatial branch and bound
while ε > εthresh and θ > θthresh do

Create upper/lower dual functions and find extreme points in each branch
for each branch Bb of the partition B used for lower-bounding, do

Find relaxation parameters δ0, δ s.t. δ0 +p>δ ≤ T (p) for all p ∈ Bb where C`(p) is satisfied
Store this as the lower portion of the dual envelope for this branch, Db(p)← δ0 + p>δ
Identify the lowest point on the dual envelope in this branch, Db ← min {Db(p) : p ∈ Bb}

for each branch Bb of the partition B used for upper-bounding, do
Find relaxation parameters δ0, δ s.t. δ0 +p>δ ≥ T (p) for all p ∈ Bb where C`(p) is satisfied
Store this as the upper portion of the dual envelope for this branch, Db(p)← δ0 + p>δ
Identify the highest point on the dual envelope in this branch, Db ← max

{
Db(p) : p ∈ Bb

}
Identify most extreme upper/lower branches, then update overall dual bounds on the estimand
Identify extreme branches b← arg minbDb and b← arg maxbDb

Update dual bounds D ← Db and D ← Db

Update primal bounds
Reinitialize local minimization and maximization of T (p) within extreme branches Bb and Bb,
subject to constraints C`(p). Obtain P ′ and P

′
. Update P ← min{P , P ′} and P ← max{P , P ′}.

Subdivide extreme branches
Remove lowest branch Bb from B and remove highest branch Bb from B
Subpartition Bb into Bb′ , Bb′′ and subpartition Bb into Bb′ , Bb′′
Reinsert Bb′ , Bb′′ into B and reinsert Bb′ , Bb′′ into B
Prune branches
for each branch Bb in B do

If Db > P , the branch cannot lead to an improved lower bound; remove Bb from B
If there exists no point p ∈ Bb satisfying C(p), remove Bb from B

for each branch Bb in B do
If Db < P , the branch cannot lead to an improved upper bound; remove Bb from B
If there exists no point p ∈ Bb satisfying C(p), remove Bb from B

Check progress
θ ← D −D
ε← θ/(P − P )− 1

return D, D, ε
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C Examples and detailed discussion

C.1 Step-by-step illustration of polynomial program construction

C.1.1 Step 1: Canonicalization

Panel (a) depicts a non-canonical DAG. Canonicalization proceeds by following Algorithm 1.

First, a direct Z → X edge is added, collapsing the indirect Z → U1 → X effect; similarly, a

direct U2 → Y edge is added, collapsing U2 → U3 → Y . Second, the Z → U1 and U2 → U3

edges are removed. Third, the U1 and U3 disturbances are eliminated, as they each affect a

subset of the children of U2. Finally, for clarity, we rename the disturbance that confounds X

and Y as UXY , and we explicitly draw the previously implicit disturbance parent of Z, UZ .

U1 U2 U3

Z X Y

(a)

UZ UXY

Z X Y

(b)

C.1.2 Step 2: Principal stratification

Structural Eq. Response Func. Form Possible Response Types

Z = fZ(UZ) f
(uZ)
Z (∅) ∅ 7→ {0, 1} Z-control, Z-encourage

X = fX(Z,UXY ) f
(uXY )
X (z) {0, 1} 7→ {0, 1} X-never, X-defy, X-comply, X-always

Y = fY (X,UXY ) f
(uXY )
Y (x) {0, 1} 7→ {0, 1} Y -never, Y -defy, Y -comply, Y -always

The UZ disturbance is responsible for determining only the response function for Z. Because

the structural equation for Z has no inputs besides the disturbance UZ , supplying a disturbance

value, uZ = Z-control or uZ = Z-encourage, will deterministically produce Z = 0 or Z = 1,

respectively.

The UXY disturbance is more complex because it determines the response functions for

both X and Y simultaneously. We will first define the possible response functions. For clarity,

we use “V -never” and “V -always” (where V stands in for either X or Y ) to respectively refer
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to response functions such that f
(uk)
V (a) = 0 and f

(uk′ )
V (a) = 1, i.e. never and always taking on

a positive value. Similarly, “V -comply” and “V -defy” respectively refer to disturbance values

uk′′ and uk′′′ which lead to the response functions f
(uk′′ )
V (a) = a and f

(uk′′′ )
V (a) = 1 − a, i.e.

taking on response values that comply with or defy the assigned treatment. Next, observe

that UXY can produce 16 possible joint response functions for X and Y : {X-never, Y -never},

{X-never, Y -defy}, {X-defy, Y -never}, and so on.

Our simplified program thus involves 18 disturbance values, which are in one-to-one corre-

spondence with the 2 response-function probabilities Pr(Z-type) for type ∈ {control, encourage}

and the 16 joint response-function probabilities Pr(X-type, Y -type) for type, type′ ∈

{never, defy, comply, always}.

As Section D.3 notes, when parameterizing the problem, two terms can be immediately

eliminated because Pr(Z-control) = 1−Pr(Z-encourage) and, similarly, Pr(X-never, Y -never)

is unity less the sum of all other joint response-function probabilities for X and Y . For purposes

of exposition, we will retain these superfluous parameters rather than eliminating them.

C.1.3 Step 3: Estimand polynomialization

Consider the local ATE among units that comply with encouragement to treatment uptake,

i.e. units with X(Z = 0) = 0 and X(Z = 1) = 1. This estimand, E[Y (X = 1) − Y (X =

0)|X(Z = 0) = 0, X(Z = 1) = 1], a common quantity of interest in instrumental variable

designs. However, if analysts cannot defend an assumption of monotonicity in Z → X, this

quantity cannot be point identified. Moreover, it is a nonlinear function of the principal strata,

meaning that the approach of Balke and Pearl (1997) cannot be used. This estimand can be
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polynomialized as follows:

T = E[Y (x = 1)− Y (x = 0)|X(z = 1) = 1, X(z = 0) = 0] (ATE among compliers)

=
Pr[Y (x = 1) = 1, X(z = 1) = 1, X(z = 0) = 0]

Pr[X(z = 1) = 1, X(z = 0) = 0]

− Pr[Y (x = 0) = 1, X(z = 1) = 1, X(z = 0) = 0]

Pr[X(z = 1) = 1, X(z = 0) = 0]

=

∑
{uZ ,uXY }∈S(U)

1


f

(uXY )
Y (x = 1) = 1,
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

 · Pr(UZ = uZ) · Pr(UXY = uXY )

∑
{uZ ,uXY }∈S(U)

1

{
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

}
· Pr(UZ = uZ) · Pr(UXY = uXY )

−

∑
{uZ ,uXY }∈S(U)

1


f

(uXY )
Y (x = 0and) = 1,
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

 · Pr(UZ = uZ) · Pr(UXY = uXY )

∑
{uZ ,uXY }∈S(U)

1

{
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

}
· Pr(UZ = uZ) · Pr(UXY = uXY )

Next, note that in statements of the form Pr[Y (x) = y], UZ is blocked from Y by the manip-

ulation of x. Similarly, in statements of the form Pr[X(z) = x], UZ is blocked from X by the

manipulation of z. Therefore, by Proposition 3, UZ can be eliminated from the expression for

T . This can be verified by observing that no term in the indicator function involves uZ , so∑
uZ∈S(UZ) Pr(UZ = uz) = 1 can be factored out and eliminated.

=

∑
uXY ∈S(UXY )

1


f

(uXY )
Y (x = 1) = 1,
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

 · Pr(UXY = uXY )

∑
uXY ∈S(UXY )

1

{
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

}
· Pr(UXY = uXY )

−

∑
uXY ∈S(UXY )

1


f

(uXY )
Y (x = 0) = 1,
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

 · Pr(UXY = uXY )

∑
uXY ∈S(UXY )

1

{
f

(uXY )
X (z = 1) = 1,
f

(uXY )
X (z = 0) = 0

}
· Pr(UXY = uXY )
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We can now simplify by explicitly selecting the disturbance realizations that lead to the state-

ments within the indicator functions being satisfied.

=
Pr(X-comply, Y -comply] + Pr(X-comply, Y -always)∑

type Pr(X-comply, Y -type)

− Pr(X-comply, Y -defy) + Pr(X-comply, Y -always)∑
type Pr(X-comply, Y -type)

=
Pr(X-comply, Y -comply)− Pr(X-comply, Y -defy)∑

type Pr(X-comply, Y -type)

Because this leads to a polynomial fraction, following Algorithm 2, we will define an auxiliary

variable, s, and set it equal to T .

s =
Pr(X-comply, Y -comply)− Pr(X-comply, Y -defy)∑

type Pr(X-comply, Y -type)

We can then manipulate to eliminate the fraction. After this step of Algorithm 2, we obtain

a polynomial objective function, T = s (which is a monomial, and therefore a polynomial, in

the expanded parameter space that includes s) and a single polynomial equality constraint

that binds s to the target quantity,

CT =


Pr(X-comply, Y -comply)− Pr(X-comply, Y -defy)

−s · Pr(X-comply, Y -never)− s · Pr(X-comply, Y -defy)

−s · Pr(X-comply, Y -comply)− s · Pr(X-comply, Y -always) = 0


C.1.4 Step 4: Constraint polynomialization

Next, we turn to three types of information: (i) the first and second axioms of probability; (ii)

modeling assumptions A, such as the common “no defiers” assumption of Angrist et al. (1996),

which states that encouragement would not lead to any unit rejecting treatment if they would

otherwise have taken treatment under control; (iii) empirical evidence E that correspond to

observed quantities.
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The axiomatic constrants are straightforwardly given by

Pr(UZ = uZ) ≥ 0 ∀ uZ ∈ S(UZ)
∑

uZ∈S(UZ)

Pr(UZ = uZ) = 1

Pr(UXY = uXY ) ≥ 0 ∀ uXY ∈ S(UXY )
∑

uXY ∈S(UXY )

Pr(UXY = uXY ) = 1

or, equivalently,

Pr(Z-type) ≥ 0 ∀ type
∑
type

Pr(Z-type) = 1

Pr(X-type, Y -type′) ≥ 0 ∀ type, type′
∑

type,type′

Pr(X-type, Y -type′) = 1

The first axiom translates into 18 inequality constraints, and the second into 2 equality con-

straints. We collect constraints arising from the laws of probability in CL. As noted above,

for simplicity of exposition, we do not exploit equality constraints to eliminate optimization

variables and reduce the problem space. However, it is important to note that doing so can

speed computation dramatically.

Next, we turn to the polynomialization of modeling assumptions A. Formally, the “no

defiers” assumption is that Pr[X(z = 1) < X(z = 0)] = 0. Following Proposition 2, this is

equivalent to

0 =
∑

uXY ∈S(UXY )

1

{
f

(uXY )
X (z = 1) = 0,
f

(uXY )
X (z = 0) = 1

}
· Pr(UXY = uXY )

where we again eliminate the blocked UZ terms via Proposition 3. This is equivalent to

CA =

 0 = Pr(X-defy, Y -never) + Pr(X-defy, Y -defy)

+ Pr(X-defy, Y -comply) + Pr(X-defy, Y -always)

 ,
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It can be seen that, in conjunction with the first-axiom constraint, this implies

0 = Pr(X-defy, Y -type) ∀ type

which is, unsurprisingly, a literal statement of the no-defiers assumption on treatment response

to encouragement. Finally, we polynomialize the empirical evidence E . Each piece of evidence

is one of eight observed probabilities of the form Pr(Z = z,X = x, Y = y). Each piece of

evidence can be polynomialized by

Pr(Z = z,X = x, Y = y)

=
∑

{uZ ,uXY }∈S(U)

1


f

(uZ)
Z (∅) = z,
f

(uXY )
X (z) = x,
f

(uXY )
Y (x) = y

 · Pr(UZ = uZ) · Pr(UXY = uXY )

We omit the translation to named strata types, which is straightforward but differs for each

of the eight pieces of observed evidence. We note that, per Section D.3), these single-world

marginal distributions can be simplified further. We do not pursue this simplification here,

but an illustration of its use can be found in Appendix C.3.
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C.1.5 Example code

The following code from our autobounds software automatically implements the steps de-

scribed above, obtaining 0.01-sharp bounds in 1.3 seconds.

# Algo 1, step 1 (App. B.4.1): provide canonicalized IV DAG

dag = DAG()

dag.from_structure("Z -> X, X -> Y, U -> X, U -> Y", unob = "U")

# Algo 1, step 2 (App. B.4.2): initialize program

# this automatically constructs generalized principal strata parameters

problem = causalProblem(dag) # Z, X, Y binary by default

# Algo 1, step 3 (App. B.4.3): state & automatically polynomialize estimand

problem.set_ate("X", "Y")

# Algo 1, step 4 (App. B.4.4): add & automatically polynomialize constraints

# this includes both empiricial evidence and probability axiom constraints

problem.load_data(datafile, optimize = False) # no Sec. 5 simplifications

problem.add_prob_constraints()

# Algo 2 (Sec. 6): compile program, implement primal-dual optimization

program = problem.write_program()

program.run_couenne() # epsilon = 0.01 by default

C.2 Example of deterministic relationships

The general approach for obtaining generalized principal strata for discrete hidden variable

DAGs (Evans, 2018; Finkelstein et al., 2021) does not take account of the kind of determinism

introduced into the model by missingness indicators, and as such may yield more principal-

strata parameters than are strictly needed. Due to the complexity of polynomial programming,

it is beneficial to avoid excess parameters where possible. We now briefly explore this issue.

Figure 9: A graph with determinism.

A RA A∗ B

Consider the scenario depicted in Figure 9. In this graph, A∗ is a proxy for the unobserved

variable A, which is observed with missingness as indicated by RA. When RA = 0, then A∗
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is deterministically equal to a special value indicating missingness (usually denoted with the

special value such as “?” or “NA”). In addition, A∗ is affected by B. This scenario might

arise if A is measured with missingness and measurement error, and the nature of the error

is affected by B. Of note, A∗ is not a fully deterministic function of A and RA, and cannot

simply be removed from the functional parameterization, as in traditional missingness without

measurement error. However, we can use the fact that it is a partially deterministic function

of RA to reduce the number of parameters needed in the functional model for this graph.

The standard principal stratification for this graph would allocate one value of εA∗—the

exogenous noise that determines A∗ in terms of its parents—for every combination of possible

responses of A∗ to its parents. Suppose A∗ takes values in {0, 1, ?}, and A, RA and B take

values in {0, 1}. This would correspond to 38 = 6561 possible values of εA∗ . However, any such

value that maps RA = 0 to A∗ ∈ {0, 1} or RA = 1 to A∗ =? is ruled out by the deterministic

relationship. As a result, εA∗ need only specify the response of A∗ in {0, 1} to A and B when

RA = 1. This yields only 24 = 16 possible values for εA∗ . This example demonstrates that

incorporating known deterministic relationships can yield a non-restrictive parameterization

with fewer parameters.

C.3 Example of program simplification

Figure 10: A graph with conditional independence and Verma constraints.

A B C D

E F

UBD

UACE

UDF

Consider the graph presented in Figure 10. We will use this graph to illustrate a number of

points raised in the main body of the paper. Suppose we are interested in the ATE of E on C.

First, we will explicitly construct the generalized principal stratification of this graph, then use

it to generate a simple polynomial program that bounds a causal target. Next, we will employ
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several of the strategies described in Section 4.2 to simplify the program, demonstrating the

importance of these strategies in obtaining tractable program formulations. Finally, we will

observe that a broader class of partial identification problems than previously recognized can

be formulated as linear programs.

Suppose all observed variables in the graph above are binary. In stratifying, we first note

that UACE is responsible for determining the values of A, C and E in response to their parents.

A has no parents, E has one parent, and C has two parents. Therefore UACE takes values in

a state space of size 21 × 22 × 24 = 128. Next, we suppose UBD is responsible for determining

the value of B in response to A, and therefore has size 22 = 4. UDF is left to determine the

value of F in response to D, and of D in response to UBD and C. It therefore takes values in

space of size 28 × 22 = 1024.24

To construct the polynomial program, we begin with the non-negativity and linear marginal-

ization constraints on the parameters of the distributions of the disturbances (for simplicity, we

abstain from eliminating one parameter per distribution using the sum-to-unity constraint):

Pr(Uk = uk) ≥ 0 for all k ∈ {ACE,BD,DE} and uk ∈ S(Uk)∑
uk∈S(Uk)

Pr(Uk = uk) = 1 for all k ∈ {ACE,BD,DE}.

We then add constraints encoding the empirical evidence E . For simplicity, we assume that

we observe the full joint distribution Pr(A = a,B = b, C = c,D = d,E = e, F = f), which is

a vector of size 26 = 64, corresponding to 64 equality constraints in the program. There are 3

disturbance variables in this graph, leading to polynomials in these equality constraints with

terms of degree 3. Given the cardinalities of the disturbances, there are 24×27×210 = 2, 097, 152

possible combinations of disturbance assignments. By a simple exchangeability argument, the

same number of possible combinations lead to each outcome in the state space. As there are

26 outcomes, each of the 64 polynomial equality constraints for E will have 221

26
= 215 terms,

24It is also possible stratify by first taking UDF to be responsible for determining F in response to D, and
then UBD to be responsible for determining B in response to A and D in response to C and UDF . By a simple
symmetry argument, the two approaches yield the same number of parameters.
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each with the following form, each of degree 3. This is a very large program.

Pr(A = a,B = b, C = c,D = d,E = e, F = f)

=
∑
uACE∈
S(UACE)

∑
uBD∈
S(UBD)

∑
uDF∈
S(UDF )

Pr(UACE = uACE) Pr(UBD = uBD) Pr(UDF = uDF )
×1{uACE, uBD, uDF ⇒ a, b, c, d, e, f}

,

where 1{u ⇒ v} is an indicator function applied to realizations u = {uACE, uBD, uDF} and

v = {a, b, c, d, e, f} of random variables U and V , which evaluates to 1 if and only if the

values u deterministically imply—together with the structural equations that are omitted for

compactness—that V = {A,B,C,D,E, F} will attain values v = {a, b, c, d, e, f}.

We now consider the strategies described in Section 4.2. First, observe that there are only

31 nested Markov quantities for this graph, corresponding to 31 polynomial equality constraints

encoding E : a substantial savings over the 64 quantities of the näıve approach. These quantities

are listed below.

θA ≡ Pr(A = 0)

θB(a) ≡ Pr(B = 0 | A = a)

θE(a) ≡ Pr(E = 0 | A = a)

θC(a, b, e) ≡ Pr(C = 0 | A = 0, B = b, E = e)

θ{B,D}(a, c) ≡ Pr(D = 0 | C = c, B = 0, A = a) Pr(B = 0 | A = a)

θD(c) ≡
∑
b

Pr(D = 0 | C = c, B = b, A = a) Pr(B = b | A = a)

θ{B,F}(a, c, d) ≡ Pr(F = 0 | D = d, C = c, B = 0, A = a) Pr(B = 0 | A = a)

θF (d, c) ≡
∑

b Pr(F = 0, D = d | C = c, B = b, A = a) Pr(B = b | A = a)∑
b Pr(D = d | C = c, B = b, A = a) Pr(B = b | A = a)

For a review of nested Markov parameterizations for binary models, see Appendix C.4.

This reduced parameterization is possible because it encodes standard conditional inde-

pendences, such as F ⊥ A | D. In addition, it encodes Verma constraints, which emerge

either (i) from independences in post-intervention distributions or (ii) from the irrelevance of
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an intervention to a particular distribution. In this case, A(C = c) ⊥ {D(C = c), F (C = c)}.

As discussed in the main text, each equality constraint can be used to reduce the number of

parameters needed in a non-restrictive reduction that can express every possible distribution

in the model.

Recall that each nested Markov parameter corresponds to the identified probability of a

single-world event, where the event is specified in terms of variables in a single district, and

the intervention is on all parents of the district relevant to those variables. For example, in

this case, one of the nested Markov parameters is Pr
[
B(A = 1, C = 1) = 1, F (A = 1, C =

1) = 1|D = 1
]
. We can now make use of Proposition 3 to reason that each of these polynomial

constraints must involve only disturbances from a single district. Therefore in the equations

corresponding to nested Markov parameters for the district corresponding to UACE, parameters

of the distributions of UBD and UDF can all be factored out as terms that will sum to unity,

meaning we will be left with equations that are linear in the parameters of UACE. Likewise, in

equations corresponding to nested Markov parameters for the district containing descendants

of UBD and UDF , parameters for the distribution of UACE will factor out, and we will be left

with a quadratic equation.

Finally, we can make use of Proposition 4 to note that constraints involving nested Markov

parameters corresponding to the {UBD, UDF} district can be dropped from the program. This

is because they only involve parameters for the distributions of UBD and UDF , which do not

appear in any constraint involving parameters for the distribution of UACE. The target, by

contrast, involves only parameters for the distribution of UACE.

As a result of taking the three steps described in Section 4.2, we have taken this problem

from a polynomial program involving 1156 parameters to a linear program involving only

27 = 128 parameters and fewer constraints. This example also motivates the following corollary,

which expands the class of partial identification problems that can be formulated as linear

programs relative to known results (Balke and Pearl, 1997; Finkelstein et al., 2020; Wolfe

et al., 2019).

Corollary 2. Suppose G is a hidden variable DAG with observed variables V , C` = {V`(a`) =
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v`} are counterfactual statements indexed by ` ∈ L, and Pr (
⋂
` C`) is the target of interest.

Further suppose that the full joint distribution Pr(V = v) is observed. Then Pr (
⋂
` C`) can be

sharply bounded given the observed data by optimizing a linear program if all {V` : ` ∈ L} are

in the same single-latent-variable district.

Proof. Because the common district of C contains only a single latent variable, by Proposition

3 the objective will be linear in the parameters of the distribution of that latent variable. By

Proposition 4, the constraints will not involved parameters corresponding to other districts.

By Algorithm 2, no single term in a constraint will involve multiple parameters for the same

latent distribution, meaning that all constraints involving only parameters corresponding to a

single-variable district will be linear. The non-negativity and sum-to-unity constraints on the

parameters of the latent-variable distribution are also linear. It follows that the objective and

all constraints are linear.

C.4 Discussion of Nested Markov models

The nested Markov model is a set of distributions Pr(V) associated with an acyclic directed

mixed graph (ADMG) G. This model is notable in the study in hidden variable DAGs because

it has been shown (Evans, 2018) that given a set of distributions Pr(V ∪ H) that factorize

with respect to a DAG with vertices V∪H, the nested Markov model associated with a latent

projection G(V) of the DAG captures all equality constraints implied by this factorization on

the marginal distribution Pr(V). To define this model, we will need to introduce a number of

definitions.

A conditional ADMG (CADMG) is a graph G(V,W) with random and fixed vertices with

directed and bidirected edges, with the property that no edge may have an arrowhead into

an element of W, and no directed cycles exist. Note that an ADMG is a special case of a

CADMG where W is empty. The notion of a district (bidirected connected set) generalizes to

CADMGs, but only applies to elements in V.

A Markov kernel qV(V|W) is a mapping from values of W to distributions over V. While

conditional distributions are Markov kernels, not all Markov kernels are conditional distribu-
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tions. For example, interventional distributions arising in causal inference are Markov kernels,

but are generally not conditional distributions. Marginalization and conditioning are defined

in the same way for Markov kernels as for conditional distributions. That is, for any A ⊂ V,

qV(A|W) =
∑
V\A

qV(V|W)

qV(V \A|A ∪W) =
qV(V|W)

qV(A|W)
.

Given a CADMG G(V,W), a variable V ∈ V is said to be fixable if there does not exist

a variable Z ∈ V such that Z 6= V , and which is a descendant of V and lies in the same

district as V . Given V fixable in G(V,W), define the fixing operator φV (G) that outputs a

new CADMG G(V \ {V },W ∪ {V }) which inherits all vertices and edges from G(V,W) with

the following two exceptions. First, V is treated as a fixed variable, and second all edges with

an arrowhead into V are removed.

Given a pair of a CADMG G(V,W) and kernel qV(V|W), if V is fixable in G(V,W), we

define the fixing operator φV (qV;G) that yields the following kernel:

qV\{V }(V \ {V }|{V } ∪W) ≡ qV(V|W)

qV(V |mbG(V ) ∪W),

where mbG(V ), the Markov blanket of V in G is defined to b the district of V , along with all

parent variables of this district (this may include elements of W).

A sequence V1, V2, . . . is said to be fixable in a CADMG G(V,W) if either it is the empty

sequence, or V1 is fixable in G(V,W), and V2, . . . is fixable in φV1(G(V,W)). We inductively

define the following natural extensions of the fixing operator to sequences, as follows:

φ(G) ≡ G

φV1,V2,...(G) ≡ φV2,...(φV1(G))

φ(qV;G) ≡ qV

φV1,V2,...(qV;G) ≡ φV2,...(φV1(qV;G);φV1(G))
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For graphs any fixable sequence for a set S yields the same result, thus we define the

operator φS(G) w.l.o.g. to mean “apply the fixing operator in order according to any fixing

sequence for elements in S.”

A set R is said to be reachable in G(V,W) if there exists a fixable sequence for V \R in

G(V,W). A reachable set R is called intrinsic in G(V,W) if φV\R(G(V,W)) has a single

district containing all elements of R.

Given a CADMG G(V,W), define an ADMG G |W to be a graph which contains vertices

V∪W and all edges in G(V,W), and in addition a bidirected edge between any pair of vertices

in W.

The nested Markov model may be (equivalently) defined by means of a factorization, or

a global Markov or local Markov properties. We reproduce the global Markov property here,

with the other model definitions, along with extensive discussion, may be found in (Richardson

et al., 2017).

The global Markov property is defined using m-separation, a generalization of d-separation

applicable to graphs with both directed and bidirected edges. Like d-separation, a vertex set

A is said to be m-separated from the vertex set B given a vertex set C if all paths from A

to B are “blocked” by C. A path is considered blocked if any consecutive triplet of vertices

on the path is blocked. Any non-collider triplet is blocked if the middle vertex is in C. Any

collider triplet is blocked if neither the middle vertex, nor any descendant of this vertex, is in

C. In mixed graphs like ADMGs, colliders may be formed using either directed or bidirected

edges. M-separation is discussed in more detail in (Richardson, 2003). A distribution Pr(V)

is said to obey the m-separation criterion in an ADMG G if whenever A is m-separated from

B given C in G, then A is conditionally independent of B given C in Pr(V).

A distribution Pr(V) is said to obey the global nested Markov property with respect to

an ADMG G if for every reachable set R, the kernel φV\R(Pr(V));G) obeys the m-separation

criterion with respect to G |V\R obtained from φV\R(G).

It is known that if Pr(V) is nested Markov with respect to an ADMG G, then given a

reachable set R, any fixable sequence for V \ R yields the same kernel if applied to Pr(V)

and G. Thus, we will define φV\R(Pr(V);G) for any R reachable in G, w.l.o.g. for distribution
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Pr(V) in the nested Markov model, to mean “apply the fixing operator to any fixable sequence

for V \R.”

Parameterizations for distributions Pr(V) nested Markov with respect to an ADMG G

have been derived for multivariate normal (Shpitser et al., 2018), and categorical (Evans and

Richardson, 2019) data.

Here we describe the parameterization for binary nested Markov models. More details may

be found in (Evans and Richardson, 2019).

Given an ADMG G, let I(G) be the at of all intrinsic sets in G. For each such set S, define

head(S) to be the subset of S with no children in φV\S(G). Similarly, define tail(S) to be the

set of parents of S in G. Note that the head and the tail for each S ∈ I(G) are disjoint.

The parameterization of the binary nested Model is given by the set of parameters of the

form

{θS(t) : S ∈ I(G), t values of tail(S)}.

Each parameter θS(t) is obtained from qS(S|V \ S) = φV\S(p(V);G) as follows:

θS(t) =
qS(S|V \ S)∑

head(S) qS(S|V \ S)

∣∣∣∣∣
head(S)=0,tail(S)=t

.

Conversely, the observed data distribution Pr(V) may be obtained from these parameters using

the Möbius inversion formula, as described in (Evans and Richardson, 2019).

Consider a hidden variable DAG shown in Figure 11 (a) where variables H1 and H2 are

unobserved, with the corresponding latent projection ADMG shown in Figure 11 (b). The

global nested Markov property allows us to read off conditional independences from Pr(V = v),

where V = {A1, L1, A2, L2}, and from Markov kernels associated with sets reachable in this

ADMG, derived from Pr(V) by means of the fixing operator. For example, the set {L2, L1}

is reachable since the set V \ {L2, L1} = {A1, A2} is fixable in the sequence A2, A1. Applying

this fixing sequence to the ADMG in Figure 11 (b) yields the CADMG in Figure 11 (c), and

applying this fixing sequence to the distribution Pr(V = v) along with the graph in Figure 11
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(b), yields the kernel q{L1,L2}(L1, L2 | A1, A2) = Pr(L2 | A1, L1, A2) Pr(L1 | A1).

Any m-separation in the graph G |{A1,A2}, shown in Figure 11 (d), corresponds to a con-

ditional independence that holds in the corresponding kernel. In particular, since L2 is m-

separated from A1 given A2 in Figure 11 (d), we conclude that
∑

L1
Pr(L2 | A1, L1, A2) Pr(L1 |

A1) is not a function of A1. This is an example of a generalized independence constraint or

Verma constraint, a type of equality constraint that is captured by the global nested Markov

property. Note that L2 is not independent of A1 conditional on A2 in the original graph in

Fig 11 (b), due to the existence of a path A1 → L1 ↔ L2 that is m-connected since a descendant

A2 of a collider at L1 is conditioned on.

The binary parameterization of the nested Markov model associated with the graph in

Figure 11 (b) is as follows:

θA1 ≡ Pr(A1 = 0)

θL1(a1) ≡ Pr(L1 = 0 | a1)

θA1,A2(l1) ≡ Pr(A2 = 0|l1, A1 = 0) Pr(A1 = 0)

θA2(l1) ≡
∑
a1

Pr(A2 = 0|l1, a1) Pr(a1)

θL2,L1(a1, a2) ≡ Pr(L2 = 0|L1 = 0, a1, a2) Pr(L1 = 0|a1]

θL2(a2) ≡
∑
l1

Pr(L2 = 0|l1, a1, a2) Pr(l1|a1).

The total parameter count is 1 + 2 + 2 + 2 + 4 + 2 = 13, which is two less than the saturated

parameterization of a four variable binary model, which has dimension 15. The 2 missing

parameters are due to the missing edge between A1 and L2 and are associated with the Verma

constraint discussed above. Had that edge been present, the last parameter family θL2(a2)

consisting of two parameters would have instead taken the form θL2(a2, a1) for all values of

a1, a2, yielding 4 rather than 2 parameters.

These parameters are algebraic functions of the observed data distribution Pr(V = v).

Conversely the observed data distribution may be obtained from these parameters by means

of the Möbius inversion formula, with the details given in (Evans and Richardson, 2019).
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(a)

A1 L1 A2 L2

(b)

A1 L1 A2 L2

(c)

A1 L1 A2 L2

(d)

Figure 11: (a) A hidden variable DAG where only variables A1, L1, A2 and L2 are observed.
(b) A latent projection mixed graph obtained from the DAG in (a). (c) A CADMG obtained
from (b) by fixing A2. (d) The graph G |{A1,A2} obtained from (c) which is used to encode the
global nested Markov property for the reachable set {L1, L2}.

D Details on program simplifications

To make the proposed simplifications more concrete, we will illustrate them in the context of the

instrumental variable problem shown in Figure 12. As the figure shows, the problem involves a

randomized encouragement, Z, with associated disturbance UZ , and confounded treatment and

outcome, X and Y , with shared disturbance UXY . Applying Algorithm 2 yields an initial, non-

simplified program in 18 parameters, each taking on possible values in [0, 1]: the 2 parameters of

Pr(UZ = uZ), representing Pr(Z-type), and the 16 parameters of Pr(UXY = uXY ), representing

Pr(X-type, Y-type′). We will suppose that the available empirical evidence E consists of eight

pieces of information representing the joint observational distribution Pr(Z = z,X = x, Y = y)

for each {x, y, z} ∈ {0, 1}3, producing eight constraints. We further suppose that the only

modeling assumption in A is the monotonicity or “no defiers” assumption on Z → X, which

translates into four additional constraints: Pr(X-defy, Y-type) = 0 for each of the four principal

strata of Y. Finally, both Pr(UZ = uz) and Pr(UXY = uXY ) are constrained to sum to unity.

Together, these comprise 14 constraints in the initial, non-simplified polynomial program.
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Figure 12: A polynomial program produced by Algorithm 2. Construction of a poly-
nomial program for an instrumental variable problem. Panels (a–d) depict inputs to the algo-
rithm. The graph, G, contains randomized encouragement, Z, as well as confounded treatment
and outcome, X and Y . The evidence E consists of the joint distribution of Z, X, and Y . A
consists of a monotonicity assumption for Z → X. S states that Z, X, and Y are binary. The
target T is the ATE E[Y (x = 1) − Y (x = 0)]. Panel (e) depicts functional parameterization
with 18 disturbance partitions, following Section 3.3. Panel (f) shows the polynomial program
output by Algorithm 2, with optimization parameters indicated by underlining.

(a) Graph G (b) Evidence E (c) Assumptions A (d) Space S

Z X Y

UZ UXY

Pr

 Z = z
X = x
Y = y

 Pr

[
X(z = 0)
> X(z = 1)

]
= 0

S(Z) = {0, 1}
S(X) = {0, 1}
S(Y ) = {0, 1}

(e) Functional parameterization:

Structural Eq. Response Func. Response Form Partition Labels

Z = fZ(UZ) f
(uZ)
Z (∅) ∅ 7→ {0, 1} Z-control, Z-encourage

X = fX(Z,UXY ) f
(uXY )
X (z) {0, 1} 7→ {0, 1}

{
{X-type, Y-type′} :
type, type′ ∈ {never
defy, comply, always}

}
Y = fY (X,UXY ) f

(uXY )
Y (x) {0, 1} 7→ {0, 1}

(f) Non-simplified polynomial program:

optimize estimand:∑
uZ∈
S(UZ)

∑
uXY ∈
S(UXY )

Pr(UZ = uz) Pr(UXY = uXY )

[
1{uZ , uXY ⇒ Y (x = 1) = 1}
−1{uZ , uXY ⇒ Y (x = 0) = 1}

]
subject to empirical evidence, modeling assumptions, and laws of probability:∑

uZ∈
S(UZ)

∑
uXY ∈
S(UXY )

Pr(UZ = uz)

×Pr(UXY = uXY )
× 1

{
uZ ,
uXY

⇒
Z(∅) = z,
X(∅) = x,
Y (∅) = y

}
= Pr

(
Z = z,
X = x,
Y = y

)
for all
z, x, y
∈ {0, 1}

and Pr(X-defy, Y-type) = 0 for all type ∈ never, defy, comply, always

and
∑
uZ∈
S(UZ)

Pr(UZ = uz) = 1 and
∑
uXY ∈
S(UXY )

Pr(UXY = uXY ) = 1

in generalized principal strata parameters:

0 ≤ Pr(UZ = uZ) ≤ 1 for all uZ ∈ S(UZ) = {Z-control, Z-encourage}
0 ≤ Pr(UXY = uXY ) ≤ 1 for all

uXY ∈ S(UXY ) =
{
{X-type, Y-type′} : type, type′ ∈ {never, defy, comply, always}

}



D.1 Reducing polynomial degree by exploiting graph structure

We begin by showing how the graphical structure of causal queries reveals simplifications that

can be automatically detected and exploited. As an example, consider the polynomialized

estimand of Figure 12(f), the ATE

∑
uZ∈
S(UZ)

∑
uXY ∈
S(UXY )

Pr(UZ = uz) Pr(UXY = uXY )

[
1{uZ , uXY ⇒ Y (x = 1) = 1}
−1{uZ , uXY ⇒ Y (x = 0) = 1}

]
.

The initial objective function produced by Algorithm 2 has this form because it was automati-

cally generated according to Proposition 2. However, it can be seen that the
∑

uZ∈S(UZ) Pr(UZ =

uZ) term can be factored out of the expression and eliminated, since (i) neither Y (x = 1) nor

Y (x = 0) are affected by the disturbance UZ and (ii) the factored-out term is a sum over all

possible disturbance realizations for UZ and thus evaluates to unity. This simplification, and

others like it, is easily implemented using symbolic algebra systems such as SageMath (Stein

et al., 2019). This reduces the degree of the objective polynomial from quadratic to linear,

which can greatly accelerate computation.

More generally, a disturbance Uk can be identified as irrelevant whenever the interventions

of interest, A ⊂ V , block the relevant outcomes, Y ⊂ V—meaning that all directed paths

from Uk to Y pass through A. At a high level, Proposition 3 states that in any constraint or

objective function in which this occurs, the parameters Pr(Uk = uk) can always be factored

out and eliminated.

Proposition 3. Consider the polynomialization of a probability Pr
(⋂

` C`
)

in which each

C` = {V`(a`) = v`}. When Uk is blocked from V` by a` for every `, the parameters PUk
—

representing the probabilities Pr(Uk = uk)—can be eliminated from the polynomialization.

The proposition provides some additional guidance on when this basic intuition can be

extended to more complex scenarios involving multiple treatment and outcome sets. A proof

and additional intuition is given in Appendix F.3.
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D.2 Eliminating variables by solving equality constraints

Next, we make the somewhat obvious observation that equalities can be used to eliminate opti-

mization variables and thus simplify the system of constraints. In the running IV example, con-

sider the constraint Pr(X-defy, Y-never) = 0 which arises from the monotonicity modeling as-

sumption. The original polynomial program can be simplified by (i) deleting this constraint and

(ii) replacing every occurrence of the Pr(X-defy, Y-never) parameter with zero in every other

constraint. The resulting simplified program is equivalent in that it produces exactly the same

minimum and maximum, but more computationally efficient by virtue of having one less vari-

able and one less constraint. The second-axiom constraint Pr(Z-control)+Pr(Z-encourage) = 1

can similarly be used to eliminate one variable and one constraint. Here, an important con-

sideration is that in practice, the resulting program can be substantially more efficient when

using a two-step simplification process. We recommend first using a symbolic algebra solver

to factorize out the left-hand-side polynomial, such as Pr(Z-control) + Pr(Z-encourage), and

replace it with the right-hand-side scalar (here, unity) where possible. In a clean-up step, any

remaining occurrences of the variable can be eliminated—here, by substituting any leftover

Pr(Z-control) terms for 1− Pr(Z-encourage).

A natural extension of this technique is to use the empirical constraints arising from the

observed Pr(Z = z,X = x, Y = y) quantities to eliminate additional variables. However,

we recommend first implementing the Section D.3 simplifications, which can substantially

reorganize the empirical evidence, before using this information to eliminate variables.

D.3 Refactorizing empirical constraints to eliminate redundant in-

formation

In Section 4, we defined the empirical evidence E in general terms, emphasizing how it can

flexibly accommodate published summary statistics from administrative records or prior re-

search. In practice, however, the most common form of empirical information is a single-world

marginal distribution, or a marginal distribution over the full joint distribution of counterfactual

potential outcomes in which the same intervention (or lack of intervention) is applied for each
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variable of interest. The number of useful constraints provided by each such distribution is at

most the number of outcomes in the state space, minus one. For example, in the observational

IV case of Figure 12, the empirical evidence shown in panel (b) consists of a single-world

marginal distribution Pr(Z = z,X = x, Y = y) = Pr[Z(∅) = z,X(∅) = x, Y (∅) = y]

in which the same lack of intervention applies to Z, X, and Y . It can immediately be

seen that one of the eight constraints must be redundant since the program already implic-

itly requires that
∑

z,x,y Pr(Z = z,X = x, Y = y) = 1; thus, any constraint—for example,

Pr(Z = 0, X = 0, Y = 0)—can be dropped w.l.o.g.

It can further be seen that there are numerous equivalent ways of reformulating the same

information: for example, analysts could provide one constraint for Pr(Y = 1), two for

Pr(X = 1|Y = y) for y ∈ {0, 1}, and four for Pr(Z = 1|X = x, Y = y) for x, y ∈ {0, 1},

also totaling seven constraints.25 With these equivalent inputs, Algorithm 2 would yield an

alternative program that obtains identical bounds to the one shown in Figure 12(f). In this

subsection, we show that one family of techniques for reformulating the empirical evidence—

district factorization and an extension known as the nested Markov formulation Richardson

et al. (2017), both defined below—lead to particularly simple and efficient polynomial pro-

grams. However, as we elaborate below, some of these simplifications come at a cost: by

eliminating information that is superfluous, according to the assumed model, analysts lose the

ability to test certain observable implications of those assumptions.

To describe the techniques, we first require some additional notation. Let A ⊂ V be a

subset of main variables that are intervened upon by setting them jointly to a; this subsumes

the special case when A = ∅ and no intervention is made. Conversely, let B ≡ V \ A

represent a subset of main variables that are of interest. Formally, a single-world marginal

distribution is a marginal distribution of the full-data law in which (i) every variable in B

is either unaffected by the intervention or is a response to that intervention and (ii) every

possible outcome b ∈ S(B) is observed. That is, the single-world marginal distribution is

comprised of a set of observed quantities {Pr [B(a) = b] : b ∈ S(B)}. As we note above, the

25This implicitly fixes Pr(Y = 0), Pr(X = 0|Y = y), and Pr(Z = 0|X = x, Y = y) by the properties of the
generalized principal strata and the second-axiom constraints.
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single-world marginal distribution of Figure 12 is Pr [Z(∅) = z,X(∅) = x, Y (∅) = y] for all

{z, x, y} ∈ {0, 1}3, so A is the empty set and B is {Z,X, Y }.26

Next, we introduce the key concept of canonical graph districts—components of G that

remain connected after removing arrows between the main variables—which will form the

basis of this simplification.27 For example, in Figure 12, one district contains X and Y ,

because they are connected by UXY ; a second district contains only Z.28 It has been shown

that single-world marginal distributions arising from causal models associated with hidden-

variable DAGs, such as those studied here, can be factorized into district-specific terms (Tian

and Pearl, 2002; Richardson, 2003). A particularly useful simplification that arises from this

fact is that information equivalent to a single-world marginal distribution can be introduced,

district by district, in a particular form that substantially limits the maximum degree of the

polynomials involved.

As an illustration, consider the observational distribution of Figure 12(b), Pr
[
Z(∅) = z,

X(∅) = x, Y (∅) = y
]

—which is converted by Algorithm 2 into eight quadratic polynomial

equality constraints shown in panel (f), one of which is redundant by construction and can

be dropped. An equivalent way to introduce this information is in terms of Pr [Z(x, y) = z]

and Pr [X(z) = x, Y (z) = y], which are guaranteed to be identified because the effects of Z

on {X, Y } and {X, Y } on Z are guaranteed to be unconfounded by the definition of districts.

To elaborate, the distribution Pr[Z(x, y) = z] reduces to Pr[Z(∅) = z] = Pr(Z = z), because

neither X nor Y are ancestors of Z; one constraint is sufficient to represent this information,

as constraining Pr(Z = 1) immediately fixes Pr(Z = 0). An additional three constraints are

sufficient to fully specify Pr[X(z = 0) = x, Y (z = 0) = y] since, for example, the three other

26If analysts subsequently conducted a randomized intervention on X, this would create two additional single-
world marginal distributions that could be incorporated into the program: Pr [Z(x = 0) = z, Y (x = 0) = y] and
Pr [Z(x = 1) = z, Y (x = 1) = y]. Note that (i) Z(x) would then reduce to Z(∅), as X is not an ancestor of Z,
and (ii) these experimental distributions point-identify the ATE with no other information, and they point-
identify the local ATE among compliers in conjunction with the observational distribution and the monotonicity
assumption shown in Figure 12.

27Note that districts can also be defined for non-canonical graphs, which we do not examine; for those cases,
an extended definition is required.

28As additional examples, in Figure 2(a), V1 lies in one district while V2 and V3, which share the common
parent U23, lie in another district. In Figure 2(b–c), all nodes lie in the same district. Note in Figure 2(b),
V1 is connected through U12 to V2, which in turn is connected through U23 to V3; as a result, V1 and V3 are
indirectly connected and thus lie in the same district.
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possible x, y outcome probabilities jointly fix Pr[X(z = 0) = 0, Y (z = 0) = 0]. Yet another

three constraints fully specify Pr[X(z = 1) = x, Y (z = 1) = y], yielding seven reformulated

constraints that contain information equivalent to the original formulation. However, in refor-

mulated constraints of the form Pr[X(z) = x, Y (z) = y], UZ is now blocked from X and Y by

intervention Z = z. This means that all UZ terms can be eliminated as shown in Section D.1,

producing linear constraints instead of the original quadratic ones in Figure 12. Moreover, the

reformulated Pr(Z = z) constraints immediately point-identify the UZ optimization variables

and can thus be eliminated as described in Section D.2.

More generally, let m index districts {1, . . . ,M}. Let A(m) denote the union of (i) all

variables intervened upon, and (ii) all variables outside district m, which by definition cannot

be confounded with variables inside district m. Let B(m) be all variables inside district m that

are not intervened upon; thus,A(m) andB(m) are mutually exclusive and collectively contain all

main variables in the graph. The district-factorized quantities are a set of empirical quantities

that are guaranteed to be identified:
{

Pr
[
B(m)(A(m) = a(m)) = b(m)

]
: a(m) ∈ S(A(m)), b(m) ∈

S(B(m))
}

. In other words, for any hypothetical intervention a(m), the probability of any

possible outcome b(m) is observed, because by definition a(m) was either exogeneously set

or is unconfounded with b(m). Note that any a(m) that is not an ancestor of B(m) can be

immediately dropped, as intervening on these variables has no consequence.

A particularly effective simplification is therefore to polynomialize Pr[B(A = a) = b]

in terms of the principal strata parameters for each such a ∈ S(A) and b ∈ S(B), then

define a constraint in which the polynomial is set equal to Pr(B = b|A = a). Proposition 4

offers a guarantee on the complexity of these reformulated constraints. A proof is given in

Appendix F.4.

Proposition 4. Every district-factorized constraint can be reformulated in terms of polyno-

mials with a degree bounded from above by the number of disturbances in the corresponding

district.

We conclude with a brief discussion of alternative conceptualizations, tradeoffs, and ex-

tensions for this technique. District factorization can be thought of as a way to exploit
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certain conditional independence and generalized equality constraints (or Verma constraints,

Verma and Pearl, 1990; Tian and Pearl, 2002) on the observed single-world marginal distri-

butions to simplify the polynomial program. For example, consider a UX → X Y ← UY

graph in which binary X and Y variables are completely independent, with no confound-

ing and no causal relationship. In this case, the original empirical evidence would consist of

Pr(X = x, Y = y), in which each constraint is quadratic (the product of UX and UY pa-

rameters) and three constraints are required to convey this information (after excluding one

redundant constraint since
∑

x,y Pr(X = x, Y = y) = 1. After factorizing this single-world

marginal distribution by district, however, we obtain two types of reformulated constraints.

The first is Pr[X(Y = y) = x] = Pr(X = x), where intervention Y = y is dropped as it is

not an ancestor of X; the second is Pr[Y (x) = y] = Pr(Y = y), for the same reason. Each

of these binary distributions requires only one linear constraint to express, for a total of two

constraints. However, the simplification comes at a cost. Essentially, this reformulation of the

empirical evidence can be thought of as using the assumed structure of the graph to identify

implicit equalities, such as Pr(X = x|Y = 0) = Pr(X = x|Y = 1), that are implicitly encoded

in the polynomialization. Then, these assumed equalities are used to eliminate constraints

that are redundant if that structure in fact holds—here, constraints that relate to dependence

between X and Y , which the assumptions imply cannot exist. The tradeoff is that the result-

ing simplified program is no longer capable of detecting violations of the assumptions, because

the reformulated constraints no longer contain information about dependence of X and Y . In

other words, unlike the simplifications in Sections D.1–D.2 and D.4, applying the techniques

discussed here will result in a simplified program that is not strictly identical, in that it is

blind to some violations of the assumptions’ observable implications, whereas the unsimplified

program may report that no admissible solution (i.e., no DGP in the model space) exists.

However, when the assumptions are in fact satisfied and both programs identify admissible

solutions, the resulting bounds are guaranteed to be identical.

Note that the approach described above does not fully exploit every equality constraint

implied by the graph. For example, consider a hypothetical modification of the Figure 12 graph

in which the X → Y edge is removed (i.e., UZ → Z → X ← UXY → Y ), where the districts are
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{Z} and {X, Y } as before. In this case, the district factorization approach still results in seven

constraints: one for Pr(Z = z), three for Pr[X(Z = 0) = x, Y = y] = Pr(X = x, Y = y|Z = 0),

and three for Pr[X(Z = 1) = x, Y = y] = Pr(X = x, Y = y|Z = 1). In contrast, the nested

Markov factorization of Evans and Richardson (2019) can re-express the same observed single-

world marginal distributions using even fewer constraints, by fully exploiting every conditional

independence and generalized equality implied by the graph. For example, here the three

constraints for Pr[X(Z = 1) = x, Y = y|Z = 1] can be replaced with a single constraint for

Pr[X(Z = 1)] = Pr(X|Z = 1), because the assumed graph implies that the distribution of Y

is unaffected by intervention on Z, meaning that the now-omitted constraints are duplicative

of the previous Pr[X(Z = 0) = x, Y = y|Z = 0] constraints if the graphical assumptions hold.

Note that this simplification exploits a conditional independence constraint implied by the

graph; for an example of how generalized independence constraints are also exploited by the

nested Markov formulation, see Appendix C.3.

The procedure in Appendix C.4 shows how to employ the nested Markov simplification

for an arbitrary single-world marginal distribution by (i) computing empirical quantities; (ii)

polynomializing each quantity; (iii) setting it equal to its observed value, and (iv) adding the

constraint to the program. This approach can result in considerable savings; for example,

Appendix C.3 shows how 64 constraints can be reduced to 31 constraints using the nested

Markov simplification.

Finally, when certain deterministic relationships exist between variables in V , as in the

missing-data setting of Figure 7(c–d),29 these relationships may imply additional equality con-

straints not exploited by the nested Markov approach. In such cases, it may be possible to

further reduce the number of constraints. We caution that in general, the simplifications pro-

posed in this should be viewed as a spectrum of tradeoffs. Fully implementing them will result

in the simplest and fastest-running polynomial programs, but prevent analysts from testing

many observable implications of their theories. Alternatively, providing the most complete

possible form of information—one constraint for every v ∈ S(V )—will result in more complex

29In this graph, a latent variable Y has an observed version Y ∗ that deterministically inherits Y ∗ = Y when
a reporting variable R = 1, but takes on the missing-value indicator Y ∗ = NA otherwise.
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programs that retain the ability to falsify every observable implication of an analyst’s theories.

D.4 Eliminating additional constraints and parameters

Finally, we describe when constraints and parameters can be safely eliminated from a program.

We say that parameters x and y co-occur in a polynomial system if they appear in the same

constraint; they interact if there exists a sequence of parameters from x to y such that every

adjacent pair co-occurs. For example, consider the constraints x+y = a, y+z = b. Here, x and

y co-occur; x and z interact. If a constraint’s parameters do not interact with the objective’s

parameters, that constraint may be dropped. If a parameter exists only in constraints that

have been eliminated, then the parameter has also been eliminated, simplifying the system.

This is frequently of use after employing the factorization techniques of Section D.3, as dis-

turbance parameters from one district rarely interact with those from another district. In the

instrumental variable example of Figure 12, this results in the constraint for Pr(Z = 1) being

eliminated from the program entirely.

E Details on statistical inference

Here, we elaborate on the procedure for statistical inference that was briefly introduced in

Section 6. As in the main text, we will use the running example of a binary X → Y graph

with confounding X ← U → Y to illustrate.30 As previously shown in Figure 3, bounds on

the causal estimand are implied by admissible values of the constraints our algorithm seeks

to optimize, which, in this simple example, can be represented in three-dimensional space. In

other words, if we can characterize the uncertainty in our estimates of the relevant constraints,

such as Pr(X = 1, Y = 0) here, we can obtain confidence intervals on the causal quantity of

interest.

30In what follows, we will assume that empirical evidence arises from a single multinomial distribution, such
as Pr(X = x, Y = y); if multiple independent sets of empirical evidence about differing quantities are available,
the procedure generalizes straightforwardly by repeating the procedure within each set and combining the
results appropriately.

69



In this example, the population empirical constraints are E =
{
g`(PV ) = E` : `

}
={

Pr(X = 0, Y = 0), Pr(X = 1, Y = 0), Pr(X = 0, Y = 1), Pr(X = 1, Y = 1)
}

. For

compactness, we will collect observable population quantities in the vector E = [E`]; in the

simulation population here, this is E = [0.121, 0.346, 0.349, 0.184]. When these constraints

are input to the algorithm, we refer to the results as the population bounds. In practice, the

empirical quantities used in these constraints are estimated from finite samples—for example,

rather than E, we may only have Ê = [0.113, 0.352, 0.357, 0.178] from a sample of N =

1, 000. By the plug-in principle, the algorithm then relies on the estimated constraints, Ê ={
g`(PV ) = Ê` : `

}
, and produces the estimated bounds.

To construct confidence bounds in this example using Algorithm 3, we then replace the

Ê equality constraints with a set of loosened confidence constraints CRα(Ê). In other words,

suppose the population bounds would be obtained by optimizing subject to a set of exact equal-

ity constraints contained in E , in which the `-th observable quantity imposes the constraint

{g`(PV ) = E`}. The vector of observable population quantities, E, is depicted with a sphere

in Figure 13(a). Because these population quantities are unknown, to estimate the bounds, an-

alysts instead use the plug-in principle to construct the an alternate set of equality constraints,

Ê , containing
{
g`(PV ) = Ê`

}
. The estimated quantities used here, Ê, are shown as a small

cube in Figure 13(a). Finally, the confidence bounds will incorporate the loosened constraint{
g`(PV ) ∈ CRα(Ê`)

}
∈ CRα(Ê) where CRα(Ê) is designed to contain Ê . Two possible confi-

dence regions for the estimated quantities are depicted in Figure 13(b–c). Confidence bounds on

the estimand are constructed by minimizing and maximizing the target quantity subject to this

loosened constraint.31 For example, we will show that one possible confidence region—depicted

in Figure 13(b)—is Pr(X = 0, Y = 0) ∈ [0.084, 0.147], Pr(X = 1, Y = 0) ∈ [0.305, 0.401],

Pr(X = 0, Y = 1) ∈ [0.310, 0.406], and Pr(X = 1, Y = 1) ∈ [0.142, 0.219], a region that

contains the sample proportions P̂r(X = 0, Y = 0) = 0.121, P̂r(X = 1, Y = 0) = 0.346,

P̂r(X = 0, Y = 1) = 0.349, and P̂r(X = 1, Y = 1) = 0.184. Therefore, every DGP that

is admissible for the estimated bounds (which require the sample proportions to be exactly

31Note that the resulting confidence bounds also incorporate the user-specified looseness threshold ε, and
larger values will result in wider confidence bounds.
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Figure 13: Polynomial confidence regions in a binary graph. We consider a confounded
X → Y graph with X ← UXY → Y . In panel (a), a small blue sphere depicts the population
distribution Pr(X = x, Y = y) along three dimensions: Pr(X = 0, Y = 0), Pr(X = 0, Y = 1),
and Pr(X = 1, Y = 0); the final category, Pr(X = 1, Y = 1) (not depicted), sums to unity.
Observed proportions, shown with a small blue cube, differ slightly due to sampling error.
Panel (b) shows the Bernoulli-KL confidence region, which is conservative in finite samples and
can be polynomialized as a set of linear inequalities. Panel (c) shows the Gaussian confidence
region, which is asymptotically valid and can be polynomialized as a single convex quadratic
inequality. Both regions are centered on the sample proportions (blue cube), but will contain
the population proportions (blue dot) with ≥ 95% (Bernoulli-KL) and asymptotically 95%
coverage (Gaussian) over repeated samples.

(a) (b) (c)

satisfied) is also admissible in the confidence bounds (which only require them to be approx-

imately satisfied). However, the confidence bounds also consider many additional DGPs that

are inadmissible for the estimated bounds. As a result, the confidence bounds must contain

the estimated bounds, because taking a minimum or maximum over a superset can only result

in more extreme values.

By the same logic, if the confidence region for the observable quantities, CRα(Ê), covers the

true population values, E—as in the example above—then the resulting confidence bounds will

also cover the population bounds. This means that if the confidence region for the observable

quantities has coverage in 1− α of repeated samples, then the resulting confidence bounds for

the estimand will also cover the population bounds with probability ≥ 1− α.32

In discrete settings, the task of obtaining confidence bounds thus reduces to the problem

32However, when the confidence region does not fully contain population quantities due to sampling error,
it is still the case that confidence bounds may contain population bounds. This can occur if the non-covered
quantity corresponds to a constraint that is irrelevant to the bounds. For example, consider a scenario in
which an irrelevant third variable Z is added to the confounded X-Y example, with no connection to either of
the original variables. In that case, failure to cover by overestimating Pr(Z = 1) will have no bearing on the
resulting bounds.
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of constructing regions CRα(Ê) for the multinomial proportion, such that Pr
(
E ∈ CRα(Ê)

)
≥ 1 − α. We discuss two methods for doing so that are easily polynomialized and can thus

be incorporated into Algorithm 3. As we show in Section 7.2, coverage is substantially higher

than nominal. We note that obtaining nominal coverage of bounds is a notoriously difficult

problem, and improving these confidence bounds—for example, by incorporating refinements

such as Guo and Richardson (2021)—remains an important direction for future research.

Our first method for constructing confidence regions for the observable quantities is based

on the “Bernoulli-KL” approach of Malloy et al. (2020) that constructs separate confidence

regions for each observable event in the data generating process, such as X = 0, Y = 0.

When combined, these event-specific confidence regions form a hypercube that is guaranteed

to contain the full vector of population event probabilities, E, at conservative rates in repeated

samples.

Formally, let k ∈ {1, . . . , K} index possible atomic events, such as X = 0, Y = 0, which,

when considered jointly, represent the true population region of the constraints correspond-

ing to the bounds on the causal estimand. We denote the probability of the k-th event as

pk = Pr(V = vk). These proportions can be estimated noisily from data, denoted p̂k. We will

develop a confidence region of the form CRα(Ê) =
⊗K

k=1

[
p
k
, pk

]
—the aforementioned hyper-

cube around the estimated sample proportions. In our running example, this means we first

construct the region Pr(X = 0, Y = 0) ∈
[
CRα(P̂r(X = 0, Y = 0), CRα(P̂r(X = 0, Y = 0)

]
,

proceeding to Pr(X = 0, Y = 1) ∈
[
CRα(P̂r(X = 0, Y = 0), CRα(P̂r(X = 0, Y = 1)

]
, and so

on before combining. A visualization of the resulting region is given in Figure 13(b).

We now summarize how p
k

and pk are calculated to ensure that they jointly cover the

population proportions with probability of at least 1−α, using a result on the Kullback-Leibler

divergence of sampling distributions. Taking each p̂k estimate as given, we identify regions of

the unknown pk from which the observed p̂k diverge substantially. Equation 11 of Malloy et al.

(2020) provides bounds on the sampling probability of observing KL ([1− p̂k, p̂k], [1− pk, pk]) =

p̂k log p̂k
pk

+ (1− p̂k) log 1−p̂k
1−pk

in excess of some threshold. In turn, these bounds imply regions of

pk that can be conservatively rejected. Let p
k

be given by the solution to KL
(
[1− p̂k, p̂k], [1−

p
k
, p

k
]
)

= 1
N

log 2K
1−α subject to p

k
∈ [0, p̂k]. Similarly, let pk be given by KL

(
[1 − p̂k, p̂k], [1 −
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pk, pk]
)

= 1
N

log 2K
1−α subject to pk ∈ [p̂k, 1]. It can be seen from Malloy et al. (2020) that when

constructing p
k

and pk in this way, Pr
(⊗K

k=1 pk ∈ [p
k
, pk]

)
≥ α over repeated samples.

The Bernoulli-KL method produces a confidence region for single-world distributions that

is guaranteed to have conservative coverage for the multinomial proportion in finite samples.

The region can be represented as a system of linear inequality constraints, then incorpo-

rated into the polynomial program. For example, rather than using the equality constraint

Pr(X-control, Y -never)+Pr(X-control, Y -defy) = Pr(X = 0, Y = 0) = 0.121 to obtain popula-

tion bounds, or P̂r(X = 0, Y = 0) = 0.113 for estimated bounds, we instead optimize subject to

the inequality constraints 0.073 ≤ Pr(X−control, Y−never)+Pr(X−control, Y−defy) ≤ 0.163,

the values obtained from the procedure described above.

Our second approach uses an asymptotic confidence region based on the multivariate Gaus-

sian limiting distribution of the multinomial proportion, N
(
p, 1

N
diag(p)− 1

N
pp>

)
(Bienaymé,

1838). Because the multinomial proportion must sum to unity, this distribution is degenerate,

and it is often more convenient to work with its first K − 1 elements, p\K . We construct the

asymptotic confidence region as (p̂\K − p\K)>
(

1
N

diag(p̂\K)− 1
N
p̂\Kp̂

>
\K

)−1

(p̂\K − p\K) ≤ z,

where z is an appropriate critical value of the χ2 distribution. A visualization of the resulting

region is given in Figure 13(c). Each element in p is polynomializable, leading to a single

quadratic confidence constraint that can be straightforwardly incorporated into the optimiza-

tion routine.

Simulations reported in Section 7.2 evaluate coverage of the methods for various sample

sizes.

F Proofs

F.1 Proof of Proposition 1

Proof. We adapt the proof of Finkelstein et al. (2021) to account for counterfactuals as fol-

lows. First, we define one-step-ahead counterfactuals, Vj
(
paV (Vj) = a

)
, to be those where all

main parents of a variable are subject to intervention paV (Vj) = a. Next, we note that all
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other counterfactuals and factuals in the full data law are deterministic functions of one-step-

ahead variables, after fixing U . Therefore it is sufficient to reason about only one-step-ahead

variables; intervention on other variables is irrelevant to the full data law.

Because the likelihoods of multi-district graphs factorize as the likelihoods of the districts

after intervention on their parents (Richardson et al., 2017), we can consider single-district

graphs w.l.o.g. In multi-district graphs, the bound obtained below can be applied within each

district.

Each main variable Vj has |S(paV (Vj))| one-step-ahead counterfactuals, corresponding to

possible manipulations of its parents. Each one-step-ahead counterfactual Vj
(
paV (Vj) = a

)
has a cardinality equal to those of the corresponding main variable |S(Vj)|. Therefore, the col-

lection of a single variable’s one-step-ahead counterfactuals
{
Vj
(
paV (Vj) = a

)
, Vj
(
paV (Vj) = a′

)
, . . .

}
can take on |S(Vj)||S(paV (Vj))| possible values, and there are d ≡

∏
Vj∈V |S(Vj)||S(paV (Vj))| val-

ues that the full collection of all one-step-ahead variables can take. Any model over this full

collection must be a subset of the d− 1 simplex. We let V
(
paV (V )

)
denote the collection of

one-step-ahead variables.

Suppose the disturbances U are enumerated as {U1, . . . , UK}. We will now show that

each Uk can be assumed to be discrete without altering the model for V
(
paV (V )

)
and there-

fore the full data law. First, for each value uk in the domain of Uk, we define the distri-

bution Puk

(
V
(
paV (V )

))
=
∫
u\k

P
(
V
(
paV (V )

)
| u\k, uk

)
P (u\k), where u\k denotes all

disturbances other than uk. This fixes Uk at the value uk, modifying the distribution over

V
(
paV (V )

)
.

We now make two observations. First, the model for V
(
paV (V )

)
contains Puk for any

uk, because Uk is not restricted by the model and is therefore permitted to have a point-mass

distribution at uk. Second, the expected value of Puk with respect to Uk recovers the original

marginal distribution P
(
V
(
paV (V )

))
, which is therefore in the convex hull of the set of

distributions S(Puk) ≡ {Puk | uk ∈ S(Uk)}.

Carathéodory’s Theorem (1907) states that for any point P in the convex hull of a set S

in a space of dimension d− 1, there exists a set of d− 1 points {Puk1 , . . . , Pukd−1
} and weights

{w1, . . . , wd−1} such that P =
∑d−1

`=1 w`Pui` . It then follows directly that any distribution in
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the marginal model over V
(
paV (V )

)
when latent variables have unrestricted cardinality is

also in the marginal model over V
(
paV (V )

)
when latent variables have cardinality restricted

to
∏

Vj∈V |S(Vj)||S(paV (Vj))| − 1 or higher.

F.2 Proof of Proposition 2

Proof. Using the approach developed in Evans (2018) and generalized to arbitrary graphs

in Finkelstein et al. (2021), we can obtain a generalized principal stratification that is non-

restrictive of the causal model of G over observed variables. In such a model, each V`(a`)

is determined by values of the disturbances U . By assumption, G is in canonical form, ren-

dering all disturbances marginally independent. The proposition then follows from standard

probability calculus.

F.3 Proof of Proposition 3, with discussion

Proof. Under the conditions specified, no C` involves a function of Uk. It follows that whether

the disturbances lead to C` being jointly satisfied is not a function of the value of Uk. As a

result, a sum over all parameters of the distribution of Uk can be factored out of the product

in Equation 1. By the definition of probability distributions, this sum will be equal to unity,

rendering the parameters irrelevant to the polynomial.

Discussion. To see why this independence must hold, consider that all disturbances, including

Uk, are by construction exogenous in canonical DAGs. Therefore there can be no path from a

common ancestor to both Uk and a set of outcomes Y ⊂ V , and there can be no path from

Y to Uk. It follows that the only kinds of paths that are possible are (i) paths from Uk to Y

and (ii) collider paths between Uk and Y . Of these, only the former can induce dependence.

If all paths from Uk to Y are blocked by A, then it has been shown that in the FFRCISTG

model—and therefore also in the stronger NPSEM-IE model that we use here—that U must be

independent of Y (A) (Richardson and Robins, 2013). The intuition behind this observation

is simple: once A have been intervened upon, they are no longer random and therefore cannot

propagate statistical dependence along a causal pathway. If Uk is independent of Y (A), and

our target of inference is a functional of Pr(Y (A) = y), then by definition the distribution of
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Uk contains no information about our target.

We briefly remark on the relationship between the NPSEM-IE and FFRCISTG models.

It has been shown that independence of disturbance terms in the NPSEM-IE model implies

seemingly counterintuitive restrictions on “cross-world independences,” governing how sets of

random variables counterfactually behave under inconsistent “worlds” or sets of treatment

assignments. These restrictions arise in identification theory in mediation analysis (Shpitser,

2013). The FFRCISTG model is a weaker causal model which only implies independences

on counterfactual variables with a consistent set of interventions—the so-called “single-world

independences.” It has been noted that by imposing fewer assumptions on counterfactual

variables, FFRCISTG leads to wider bounds than NPSEM-IE.

F.4 Proof of Proposition 4

Proof. Each of the nested Markov parameters corresponds to the probability that random

variables in a single district take certain values after an intervention on parents of the district.

It follows from Proposition 3 that no disturbances outside the district corresponding to the

nested Markov parameter will appear in the polynomialization of that parameter. From this, it

then follows that no disturbances in different districts will interact in constraints corresponding

to nested Markov parameters. By Proposition 2, the degree of a polynomialization of the

probability of the event is at most the number of relevant disturbances.

G Details of simulated models

In this section, we detail all models presented in Section 7. For simplicity, all main variables

in these models are binary. Simulation parameters are described in terms of principal strata.

Principal strata can take one of three forms, depending on the number of parents of the

relevant variable. Below, we provide compact notation for referring to these principal strata.

Subsequent sections report strata probabilities for each simulation, including joint distributions

over strata for multiple variables where confounding exists.

1. Variables with no parents, which have two strata. Consider a hypothetical variable
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X with no parents, as in Figure 7(a). We use x0 to denote units with X(∅) = 0 and x1

to denote X(∅) = 1.

2. Variables with a single parent, which have four strata. Consider a hypothetical

variable Y influenced by parent X, also depicted in Figure 7(a). For compactness, we

adopt the convention that counterfactual manipulations of parent variables are presented

in the form yY (X=0),Y (X=1). For example, (i) we use y00 to denote “never takers” with

example, Y (X = 0) = 0 and Y (X = 1) = 0. Similarly, (ii) y01 denotes “compliers” with

Y (X = 0) = 0 and Y (X = 1) = 1, (iii) y10 denotes “defiers” with Y (X = 0) = 1 and

Y (X = 1) = 0, and y11 denotes “always takers” with Y (X = 0) = 1 and Y (X = 1) = 1.

3. Variables with two parents, which have sixteen strata. Consider a hypothetical

variable Y influenced by parents Z and X, as in Figure 5(a). Extending the convention

described above, we denote these in compact forms ranging from y0000 to y1111. Specific

definitions are provided in Table 2.

Table 2: Principal strata for a variable Y with two parents, Z and X. Each row
corresponds to a strata, with compact names given in the first column. For each strata,
counterfactual values of Y are given in subsequent columns.

Y (Z = 0, X = 0) Y (Z = 0, X = 1) Y (Z = 1, X = 0) Y (Z = 1, X = 1))
y0000 0 0 0 0
y1000 1 0 0 0
y0100 0 1 0 0
y1100 1 1 0 0
y0010 0 0 1 0
y1010 1 0 1 0
y0110 0 1 1 0
y1110 1 1 1 0
y0001 0 0 0 1
y1001 1 0 0 1
y0101 0 1 0 1
y1101 1 1 0 1
y0011 0 0 1 1
y1011 1 0 1 1
y0111 0 1 1 1
y1111 1 1 1 1
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G.1 Noncompliance simulation

In this section, we describe the DGP for our noncompliance simulation analyzed in Section 7.1.

The DGP follows the model of Figure 5(b), reproduced below for ease of reference. Simulation

parameters are reported in terms of the joint distribution over principal strata.

Figure 14: DGP with noncompliance.

U

Z X Y

Strata for Z:

z0 0.649335

z1 0.350665

Strata for X and Y :

y00 y10 y01 y11

x00 0.0 0.0172 0.00541 0.0

x10 0.0 0.549 0.173 0.0

x01 0.0 0.0305 0.0971 0.0

x11 0.0 0.0304 0.0968 0.0

G.2 Outcome-based selection simulation

In this section, we describe the DGP for our outcome-based selection simulation, analyzed in

Section 7.3 and Figure 8(a). The DGP follows the model of Figure 7(a), reproduced below for

ease of reference. For this case, we employed the DGP of Gabriel et al. (2022).
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U

X Y S

G.3 Measurement error simulation

In this section, we describe the DGP for our measurement error simulation, analyzed in Sec-

tion 7.3 and Figure 8(b). The DGP follows the model of Figure 7(b), reproduced below for

ease of reference. Simulation parameters are reported in terms of the joint distribution over

principal strata.

UX

Y Y ∗

Strata for X

x0 0.499442

x1 0.500558

Strata for Y and Y ∗

Y ∗00 Y ∗10 Y ∗01 Y ∗11

y00 0 0.167269 0 0

y10 0 0 0 0

y01 0 0.165838 0.500388 0

y11 0 0.166505 0 0
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G.4 Outcome missingness simulation

In this section, we describe the DGP for our outcome missingness simulation, analyzed in

Section 7.3 and Figure 8(c). The DGP follows the model of Figure 7(c), reproduced below for

ease of reference. Simulation parameters are reported in terms of the joint distribution over

principal strata.

X

Y RY Y ∗

Strata for X

x0 0.499159

x1 0.500841

Strata for Y

y00 0.166371

y10 0

y01 0.666851

y11 0.166778

Strata for R
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r0000 0

r1000 0

r0100 0.250368

r1100 0.249910

r0010 0

r1010 0

r0110 0

r1110 0

r0001 0

r1001 0

r0101 0.250154

r1101 0

r0011 0

r1011 0

r0111 0

r1111 0.249568

G.5 Joint missingness simulation

In this section, we describe the DGP for our joint missingness simulation, analyzed in Sec-

tion 7.3 and Figure 8(d). The DGP follows the model of Figure 7(d), reproduced below for

ease of reference. Simulation parameters are reported in terms of the joint distribution over

principal strata.

X RX X∗

Y RY Y ∗

Strata for X
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x0 0.43464

x1 0.56536

Strata for Y

y00 0.485336

y10 0.253616

y01 0.003768

y11 0.257279

Strata for Rx

rx,0 0.470201

rx,1 0.529798

Strata for Ry

ry,0000 0

ry,1000 0

ry,0100 0.162045

ry,1100 0

ry,0110 0.177470

ry,0001 0.107010

ry,1001 0.120311

ry,0101 0.255778

ry,1101 0.081733

ry,0011 0

ry,1011 0

ry,0111 0.095652

ry,1111 0
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G.6 Scaling of computation time with variable cardinality

The computation time needed to solve a causal problem depends on three considerations:

(i) the structure of the graph; (ii) the form of the estimand and constraints; and (iii) the

cardinality, or number of categories, for each main variable.

First, when no simplifications are applied, the polynomial degree of empirical constraints

from an observed single-world marginal distribution will grow with the number of districts in

the graph. For example, consider an observational distribution in which Pr(V = v) is fully

observed. If all variables in the graph are confounded by a single U , the polynomialization of the

empirical evidence will immediately produce linear constraints; if the objective function is also

linear, then we will obtain a linear program, which can generally be solved quickly. However,

as Proposition 4 shows, even when a graph has multiple districts, the resulting evidence can

be refactorized into a series of district-specific constraints in which the polynomial degree is

upper-bounded by the number of disturbances in the district. If there are multiple districts,

but each contains only one disturbance, then the empirical evidence can be reorganized into a

series of linear constraints.

Second, the estimand itself also determines the polynomial degree, as certain estimands can

result in more complex objective functions. For example, cross-world conditional interventions—

such as the local average treatment effect among compliers in an instrumental variable problem—

can result polynomial fractions that require auxiliary variables to clear.

Finally, the number of levels in each variable can increase optimization time exponentially.

To show this, we solved several instrumental variable bounding problems, avoiding the use

of Section 4.2 simplifications to ensure that results are comparable. We varied the number

of levels for encouragement Z, treatment X, and outcome Y from binary to ternary, both

independently and in combination. In each problem, we used a uniform distribution over

Pr(Z = z,X − x, Y = y) as the sole empirical evidence. No monotonicity assumption was

used.

The resulting computation time are given in Table 3. As the table shows, runtime grows

with the number of strata, increases the number of optimization variables in the problem. For
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the IV problem, in the all-binary case, the problem was formulated and solved in 1.3 seconds

without simplifications, whereas the case where every variable is ternary was solved in 313.1

seconds. Intermediary cases where X, Z, and Y has differing cardinalities, were solved in less

than 4 seconds. We emphasize that these computation times do not reflect the Section 4.2

simplifications, which can improve runtime drastically.

Table 3: Runtime for ATE bounds in instrumental variable problems. The number
of levels of each variable in Figure 5(b) was varied from binary to ternary.

Variable cardinality Disturbance parameters
Z X Y UZ UXY Total Seconds

binary binary binary 2 22 · 22 = 16 18 1.30
ternary binary binary 3 23 · 22 = 32 35 3.91
binary ternary binary 2 32 · 23 = 72 74 3.63
binary binary ternary 2 22 · 32 = 36 38 1.18
ternary ternary ternary 3 33 · 33 = 729 732 313.12
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