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Abstract

Studies of racial bias in policing often rely on data contaminated by selection issues,
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bias—to estimate discrimination in subsequent actions like use of force. This feature
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edge conditions in which differing biases happen to sum to zero. Because there is no
substantive reason to believe such accidental cancellation would occur, we conclude this
approach is not reliable in applied research, and we emphasize the need for continued
caution and increased rigor in high-stakes analyses of discriminatory policing with
contaminated data.
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1 Introduction

Since Heckman’s (1977) Nobel-winning work, over four decades of causal-inference research

has grappled with the challenge of drawing rigorous conclusions from data contaminated

by non-random selection (Rosenbaum, 1984; Greenland, 2014; Elwert and Winship, 2014).

Recently, Knox, Lowe and Mummolo (2020) shows how selection bias also contaminates

estimates of racial discrimination by police when analyzing records of detainments (e.g. stops,

arrests). These police administrative datasets select on officers’ post-treatment decisions to

detain civilians—decisions that are potentially also discriminatory—thus omitting all data

on encounters not resulting in detainments and potentially severely understating the extent

of racial bias in policing. Heckman and Durlauf (forthcoming) further note that analyzing

only encounters involving detainments is “a classic route to selection bias” (p. 2), and Fryer’s

(2019) “failure to model interactions between police and civilians as a process,” including

discrimination in detainment, means that “differences in conditional probabilities for black

and white outcomes are not dispositive of discrimination” (pp. 3, 4–5).

Despite these selection issues, decades of research has traditionally used standard re-

gression approaches when estimating racial bias with contaminated records of police-civilian

interactions, comparing police behavior across recorded detainments of minority and white

civilians (e.g. Smith et al., 1984; Lundman, 1994, 1996; Engel, Sobol and Worden, 2000;

Spano, 2003; Novak and Frank, 2005; Schafer et al., 2006; Tillyer and Engel, 2013; Fryer,

2019). While most studies leave the identifying assumptions undergirding these techniques

unstated—making it difficult to judge the validity of analyses—a recent paper, Gaebler, Cai,

Basse, Shroff, Goel, and Hill (2020), formalizes this identification strategy, allowing for a

rigorous evaluation of a workhorse technique. The paper develops new statistical theory

aimed at “clarifying the statistical foundations of discrimination analysis” (p. 4)—e.g. by
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“estimat[ing] discrimination. . . based only on data describing those who were arrested” (p.

7). Specifically, Gaebler et al. (2020) formalizes the “often unstated assumptions in studies

of discrimination,” by stating a theoretical condition, “subset ignorability,” that, if credi-

ble, would justify standard regression approaches in this setting—even when treatment is

not as-if randomly assigned.1 These arguments, and the vast body of applied work using

traditional regression techniques, take a very different stand from methodological work “em-

phasiz[ing] the difficulties in achieving identification of bias in the presence of differences in

the race-specific distributions of unobserved variables” (Heckman and Durlauf, p. 4; refer-

ring to Heckman and Siegelman, 1993 and Heckman, 1998). In contrast to this pessimistic

view, Gaebler et al. (2020) offers statistical theory arguing that under subset ignorability

“a primary quantity of interest in discrimination studies is nonparametrically identifiable”

(abstract) and as a result, “in observational studies of of discrimination, concerns about

post-treatment bias may be misplaced” (p. 23). In other words, the paper suggests that

analysts employing common regression approaches can recover unbiased estimates despite

two complicating factors: (i) unobserved baseline differences in the minority and white en-

counters observed by police, or omitted variable bias; and (ii) the fact that officers may apply

different standards for detaining minority and white civilians, or post-treatment selection.

Empirical studies of police violence thus routinely reject the methodological points of

Knox, Lowe and Mummolo (2020) and Heckman and Durlauf (forthcoming). However, the

recent formal statement of the subset ignorability assumption offers an opportunity to defini-

tively adjudicate these disagreements. If credible, subset ignorability would simultaneously

undermine decades of methodological research on the challenges of analyzing post-treatment-

selected data, while salvaging decades of empirical research on discrimination that employs

standard regression techniques. It therefore merits close investigation. What does this

1Specifically, Gaebler et al. (2020) observe that treatment ignorability is difficult to de-

fend, because “there is little reason to think that arrest potential outcomes. . . would be

independent of an individual’s race”’ (p. 20).
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proposal entail? What arguments must be weighed and found compelling if readers of dis-

crimination research—not only researchers, but also civil rights organizations and federal

judges—are to be informed consumers?

On close examination, we find that subset ignorability is satisfied if and only if the real-

world data-generating process happens—even with imperfect controls—to be in the measure-

zero set of knife-edge scenarios in which disparate sources of statistical bias happen to sum

to precisely zero. More specifically, the approach requires researchers to assume omitted

variable bias and post-treatment selection bias perfectly offset one another. In discussing

such knife-edge scenarios, Robins et al. (2003) states, “Intuitively, it seems ‘unlikely’ ... [to

have] parameters cancelling each other” (p. 496). Indeed, causal inference textbooks like

Spirtes, Glymour and Scheines (1993) often dismiss such “accidents of parameter values,”

as “rarely occur[ing] in contemporary practice” (p. 53). In Causality: Models, Reasoning

and Inference, Pearl (2000) says these cases are effectively the same as “see[ing] a picture

of a chair” and arguing that it may actually be “two chairs positioned such that one hides

the other” (pp. 81–82). In Propositions 1–3, we show formally that subset ignorability

implicitly relies on such accidental cancellation, then provide examples of the hyper-specific

assumptions that analysts would need to articulate to defend the use of this assumption.

These results reveal that the implicit assumptions of many discrimination studies are far

less plausible than standard ignorability assumptions about groups being comparable given

as-if-random assignment of treatment. In contrast to as-if-random assumptions, subset ig-

norability only holds if groups are comparable despite responding differently to treatment. In

the context of police-civilian encounters, even if one could somehow ethically randomly as-

sign civilians of different races to encounter police, subset ignorability amounts to assuming

that race is forgotten and then re-randomized after officers decide to stop civilians because

of their race.2 Critically, subset ignorability is an assertion about the world that cannot be

2As Gaebler et al. (2020) states, “we imagine that the perception of race is counterfactually

determined after the first-stage decision but before the second-stage decision” (p. 7).
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guaranteed even by gold-standard experimental designs that randomize actors into police-

civilian encounters. In Section 3, we show that even in such ideal settings, the traditional

approach essentially assumes away the core problem of post-treatment selection: that if

officers are racially biased in their decisions to stop civilians, then minority and white ob-

servations in stop data will be fundamentally incomparable. Specifically, given racial bias

in stopping, observed encounters will consist of three different groupings (principal strata,

Frangakis and Rubin, 2002): circumstances in which officers would stop (i) only minority

civilians, e.g. jaywalking; (ii) all civilians, e.g. assault; and (iii) only white civilians, if such

cases even exist. (These groups are akin to “compliers,” “always takers,” and “defiers”

in instrumental variables analysis.) Stops of minority civilians will therefore consist of a

“jaywalking-assault” mixture, while white civilians will consist of a mixture of “assault” and

anti-white stops (whatever these may be). Nevertheless, subset ignorability requires poten-

tial outcomes across these groups to exactly balance. And if there are no anti-white stops—a

wholly plausible scenario—then subset ignorability is guaranteed to be false unless officers

are equally violent in “jaywalking” and “assault” encounters (i.e., have identical average

potential outcomes across strata). Put another way, the subset ignorability assumption is

analogous to assuming that the complier average treatment effect, the quantity identified by

instrumental variable estimators, is identical to the full sample average treatment effect—a

position that has been widely rejected by causal inference scholars since Angrist, Imbens and

Rubin (1996).

In sum, using detainment records to estimate racial bias in police violence is fraught,

because racial bias can affect the decision to detain civilians. Specifically, if there is bias

in detainment (e.g. stops and arrests), the white detainments will differ from the nonwhite

detainments in unobserved ways, even if they were perfectly comparable at the start of

encounters. For example, minority civilians may be arrested for less serious offenses than

white civilians, though often these differences—which affect whether police use force—are

not indicated in police records. Because of this, the assumption underlying the traditional
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approach, subset ignorability, amounts to assuming that various sources of statistical bias

happen to exactly offset one another. But since there is no reason to think that accidental

cancellation would occur, analysts should instead use techniques to describe the range of

possible discrimination (Knox, Lowe and Mummolo, 2020). Ignoring these selection issues

risks severely understating the degree of racial bias in policing. Careful research designs,

using quasi-experimental scenarios that justify assumptions and mitigate sources of statistical

bias using expert knowledge and case selection (e.g. West, 2018) offer a second alternative for

making reliable inferences. We caution that consumers of high-stakes discrimination research

must carefully probe the reliability of work that relies on accidental-cancellation claims. The

prioritization of expediency over rigor threatens to damage the credibility of discrimination

research at a time when scientific evidence is critically important for reform.

In the remainder of this paper, we first formally define notation and outline concepts

for the study of racial bias in Section 2. Section 3 then presents a detailed analysis of

subset ignorability, deriving its logical implications and clarifying its applicability to applied

research. We conclude by reiterating the need for caution and increased rigor in the study

of racial bias using police administrative records.

2 The Causal Problem

We consider the data-generating process in the directed acyclic graph (DAG) in Figure 1.

This causal model is general, and applicable to a range of previous studies which use ad-

ministrative data on police detainments to estimate bias in a subsequent decision, such as

the decision to issue a citation, search a vehicle, or the use force—the case we examine in

this paper.3 The units of analysis, indexed by i, are i.i.d. police-civilian encounters (e.g.

sightings of a civilian by an officer). Analysts may seek to estimate various average effects

3In a stylized example, Gaebler et al. (2020) considers a “two decider” setting in which

distinct actors (an arresting officer and a prosecutor) engage in potentially racially biased

behavior at different points in time. However, the distinction from single-decider settings,
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of the presence of minority civilians in encounters (relative to white civilians), denoted as

Di = 1 (Di = 0), on the use or non-use of force, Yi ∈ {0, 1}. Specifically, analysts may

estimate the difference in the probability of force that would result from the counterfactual

substitution of a different individual with a different racial identity into the encounter, while

holding objective context—e.g. location, time of day, criminal activity—fixed (Knox, Lowe

and Mummolo, 2020).

This counterfactual is critical to conceptualizing a feasible causal exercise. The choice of

police-civilian encounters as the unit of analysis avoids well-known issues regarding nonma-

nipulable, characteristics; thus, the “ideal experiment” does not entail the difficult-to-imagine

manipulation of an individual’s race, but rather the substitution of comparable actors into

pre-existing scenes.4 This approach does not seek to estimate the influence of larger systemic

factors that contribute to biased outcomes, such as housing discrimination; rather, it seeks

to comprehensively evaluate racial bias during the entire police-civilian encounter.

As Figure 1 shows, race may affect force through two broad channels: (i) indirectly, via

racially biased detainment, Mi ∈ {0, 1}; or (ii) directly, via racial bias in post-stop events.5

Crucially, there almost surely exist unobserved confounders, Ui, such as an officer’s level of

suspicion or mood, that jointly cause stopping and force decisions, but do not appear in

police administrative data. Conditioning on detainment, Mi, results in confounding from Ui

by opening a back-door path (Pearl, 1993), creating collider bias (Elwert and Winship, 2014).

such as the multi-stage process of police stops, is described as being of little importance: “re-

gardless of whether one imagines there are two deciders or a single one, our formal statistical

results hold unaltered” (p. 6).
4Of course, observational analyses will fail to approximate this ideal experiment if

minority- and white-civilian encounters are not comparable on unobserved, pre-treatment

characteristics.
5For clarity, we sometimes denote observations with treatment status Di = 1 as “minority-

civilian encounter” or simply “minority,” and those with Di = 0 as “white.” Similarly, we

refer to Mi = 1 observations with “stop” and Mi = 0 as “non-stop.”
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Analyzing only encounters involving detainment is therefore “a classic route to selection bias”

(Heckman and Durlauf, forthcoming, p. 2).

Figure 1: Directed acyclic graph of racial discrimination in police force. Observed
X is left implicit and may be causally prior to any subset of D, M , and Y .

D
(minority)

M
(stop)

Y
(force)

U

(suspicion)

In the potential outcomes framework (Rubin, 1974), there exist counterfactual states,

given a civilian’s race, d, of both detainment, Mi(d), and force, Yi(d,Mi(d)). Further,

given dichotomous mediator and treatment, encounters each belong to one of four “prin-

cipal strata” (Frangakis and Rubin, 2002): latent classifications of units based on their

counterfactual profiles. These groups, outlined in Figure 2, are: (i) “always stop” encoun-

ters with Mi(1) = Mi(0) = 1, e.g. encounters with civilians committing assault, an instance

where police might theoretically detain civilians regardless of race; (ii) “anti-minority” racial

stops, Mi(1) = 1 and Mi(0) = 0, e.g. encounters with jaywalkers, where minority civilians

would be detained but not otherwise similar white civilians; (iii) the somewhat implausi-

ble “anti-white” racial stops, Mi(1) = 0 but Mi(0) = 1; and (iv) “never stop” encounters,

Mi(1) = Mi(0) = 0, inconspicuous events that never result in detainment. Importantly,

these conceptual groups exist even after conditioning on observed pre-treatment features of

encounters, Xi. Because the severity of civilian behavior differs dramatically across strata, it

strains credulity to say that officers will use violence in the same way across, e.g. “jaywalking”

and “assault” type encounters.

Acknowledging the existence of these principal strata illustrates the core challenge with

making inferences from post-treatment-selected data: given racial bias in stopping (D →

M), minority detainment records will contain some unknown mix of always stops and anti-

minority stops, whereas white records will be a non-comparable unknown mix of always stops
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Figure 2: Principal Strata in Police-Civilian Encounters. The figure displays the four
principal strata that comprise police-civilian encounters based on how potential detainment
decisions, Mi(d), depend on whether the civilian is a racial minority, Di.

Yes, Mi(0) = 1 No, Mi(0) = 0

Stop if minority?
Yes, Mi(1) = 1

always stop
(e.g. assault)

anti-minority stop
(e.g. jaywalking)

(Di = 1)
No, Mi(1) = 0

anti-white stop
(?)

never stop
(inconspicuous)

Stop if white? (Di = 0)

and, to the extent they exist, anti-white stops. In practice, this means that even if analysts

achieved perfect pre-detainment covariate balance, comparisons of post-stop encounters will

still be distorted by post-detainment non-comparability, absent further assumptions.

Because police administrative data often only capture events that occur post-detainment,

analysts may seek to estimate the controlled direct effect among stops,

CDEM=1 = E[Yi(1, 1)|Mi(Di) = 1]− E[Yi(0, 1)|Mi(Di) = 1],

which captures the influence of civilian race assuming that detainments occur.6 Gaebler et al.

(2020) asserts that under subset ignorability, the CDEM=1 is nonparametrically identifiable—

an advance that, if credible, would justify decades of empirical policing research. Below, we

clarify the conditions necessary for this assumption to hold.

6We note that this quantity considers an impossible counterfactual for some unknown

portion of police encounters—how often force would be used against civilians if officers were

forced to stop them—even though, given their principal stratum and hypothetical treatment

status, they would never actually be detained.
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2.1 Additional Assumptions that Guarantee Subset Ignorability

The causal process outlined in Figure 1 represents a general and plausible description of

police stops. It allows civilian race to affect the use of force both directly and indirectly,

and it allows for unobserved common causes of detainment and force. However, analysts

may invoke several assumptions that, if credible, would greatly simplify the task of causal

identification. Before analyzing the validity of subset ignorability in the more general case,

we first discuss these alternative assumptions, visualized in Figure 3.

Figure 3 depicts scenarios in which subset ignorability is automatically satisfied: if there

is either no racial discrimination in detainment (i.e. no D →M) or no unobserved common

causes of detainment and force (i.e. no U → M , no U → Y , or both). However, these

scenarios are facially implausible in this setting. Panel (a) assumes that there are no un-

recorded subjective factors (U , e.g. mood or suspicion) in any officer decisions (either M or

Y ). Panel (b) assumes no discrimination in detainment—a difficult-to-justify assumption

in studies that aim to assess discrimination. And panels (c) and (d) require assuming that

while unobserved factors U exist, they do not jointly affect mediator (M) and outcome (Y ).

Because both M and Y are decisions by the same officer, analysts rarely have a substantive

basis for this assumption.

Despite their facial implausibility in the police-violence context, these hypothetical data

generating processes (DGPs) are helpful for clarifying specific statements about the world

that analysts might embrace when invoking subset ignorability. These theoretical justifi-

cations may also be useful when considering discrimination in different contexts. However,

given our focus on violence during police-civilian encounters, we focus in the remainder of

the paper on the conditions under which subset ignorability can be satisfied given the more

general DGP displayed in Figure 1.
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Figure 3: Policing causal structures satisfying subset ignorability. Panels (a–d)
present additional assumptions that analysts might make about the directed acyclic graph
in Figure 1, describing the relationship between civilian race (D), selection into police data
(M , e.g. stops or arrests), subsequent police behaviors (Y , e.g. use of force), and certain un-
observed factors (U). Panel (a) assumes away unobserved factors, like officer suspicion, that
influence both detainment decisions and use-of-force decisions. This is highly implausible
because police records typically do not report such subjective aspects of encounters. Panel
(b) allows for unobserved officer suspicion, but assumes that officers are not racially biased
in their stopping decisions. However, we find it inadvisable to assume away some aspects of
police discrimination in studies intended to analyze other aspects of police discrimination.
The remaining panels allow for unreported subjective factors, but assume that such factors
will not jointly influence selection into the data and the outcome of interest—an assumption
that will often be impossible to justify when analyzing observational data on police-civilian
encounters, because both events are decisions made by the same officer.

D M Y

(a)

D M Y

U

(b)

D M Y

U

(c)

D M Y

U

(d)



3 A Formal Analysis of Subset Ignorability

We begin by formally analyzing the argument that the CDEM=1 can be estimated with-

out bias, after selecting on detainment, as long as subset ignorability (Definition 1, below)

holds. This claim was formalized in Gaebler et al. (2020) but is implicit in numerous prior

studies of racially biased policing that rely on detainment records (e.g. Smith et al., 1984;

Lundman, 1994, 1996; Engel, Sobol and Worden, 2000; Spano, 2003; Novak and Frank, 2005;

Schafer et al., 2006; Tillyer and Engel, 2013; Fryer, 2019). To evaluate it, we examine the

implied relationships that analysts must believe about the world—and justify to readers and

policymakers—before invoking this assumption in applied discrimination research.

We begin our formal analysis by first considering a best-case scenario: when treatment

ignorability holds at the start of police encounters. This would be satisfied in an experimental

setting, where otherwise comparable white and nonwhite civilians were randomly assigned

to police encounters, or if observed covariates were sufficiently rich to render treatment as-

if random. Even here, discrimination in detainment will still contaminate data received

by analysts, but concerns over baseline differences in encounters, at least, can be ruled out.

However, even in this ideal case, we find that the subset ignorability assumption is effectively

acknowledging selection, but assuming away selection bias. Specifically, Proposition 1 shows

that subset ignorability can be satisfied if and only if an extraordinarily difficult knife-

edge balancing condition holds: that while officers may stop minority and white civilians

in different circumstances due to discrimination (e.g. stopping one group for as little as

jaywalking, but another only for crimes as serious as assault), minority and white stops are

nonetheless exactly comparable in terms of the potential for officer violence.

Because treatment ignorability may well be violated, we then turn to the general case:

when analysts must also grapple with baseline differences in encounters due to omitted

variables. Gaebler et al. (2020) argue that despite this methodological challenge, the subset

ignorability assumption offers a path forward. Using this proposed approach, “a primary

quantity of interest in discrimination studies is nonparametrically identifiable” (abstract)
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and as a result, “in observational studies of of discrimination, concerns about post-treatment

bias may be misplaced” (p. 23). These theoretical arguments are provocative: in contrast,

past work has “emphasize[d] the difficulties in achieving identification of [racial] bias in the

presence of differences in the race-specific distributions of unobserved variables” (Heckman

and Durlauf, p. 4; referring to Heckman and Siegelman, 1993 and Heckman, 1998).

How can subset ignorability solve these well-known issues? In Proposition 2, we formally

analyze the proposed method in full generality. We show that under confounding, subset

ignorability will hold if and only if an even more specific and difficult-to-satisfy knife-edge

assumption is true. In Proposition 3, we go a step further, proving that unless post-treatment

bias is precisely equal in magnitude and opposite in sign to omitted variable bias, subset

ignorability is guaranteed to be false. As a long line of causal inference scholars have noted

(see Section 3.2), such knife-edge accidental cancellation cannot be credibly assumed to hold

in applied research using real-world data.

3.1 In Ideal Experiments, Subset Ignorability Holds iff Cross-

principal-strata Knife-edge Balancing Holds

We now state the subset ignorability assumption (Gaebler et al., 2020). The remainder

of this section examines it in an idealized experimental setting. For brevity, we implicitly

condition on pre-treatment covariates, Xi, here and throughout.

Definition. Subset ignorability assumption.

Yi(d, 1) ⊥⊥ Di | Mi = 1

In ideal experimental conditions, invoking subset ignorability means assuming that despite

the fact that analysts selected on detainments (Mi = 1), this selection does not induce

selection bias. We make one conceptual observation and one formal observation about this

“no-selection-bias” assumption. Conceptually, analysts often fail to distinguish between (i)

assuming a condition holds, which is easy; and (ii) satisfying a condition and carefully
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justifying it, which is hard. And formally, despite appearing to be a simple statement about

the ignorability of civilian race, this no-selection-bias assumption is in fact an extraordinarily

strong requirement about the relationship between potential police force across principal

strata—in “assault” type always stops, “jaywalking” type anti-minority stops, and (if these

exist) anti-white stops—groups which cannot be fully distinguished by the analyst. This

relationship is given in Proposition 1.

Proposition 1. With treatment ignorability, the subset ignorability assumption is sat-

isfied if and only if the following knife-edge equality holds:

E[Yi(d, stop) | always stop]
Pr(always stop)

Pr(always stop) + Pr(anti-min. stop)

+ E[Yi(d, stop) | anti-min. stop]
Pr(anti-min. stop)

Pr(always stop) + Pr(anti-min. stop)
(1)

=

E[Yi(d, stop) | always stop]
Pr(always stop)

Pr(always stop) + Pr(anti-white stop)

+ E[Yi(d, stop) | anti-white stop]
Pr(anti-white stop)

Pr(always stop) + Pr(anti-white stop)
(2)

Discussion. The left-hand side of Proposition 1, expression (1), corresponds to the un-

known composition of observed minority stops, a “jaywalking-assault” mixture in unknown

proportions. The right-hand side, (2), refers to the composition of observed white stops,

an unknown mixture of “assault” and anti-white stops (whatever those may be). This

shows that, at its core, the no-selection-bias assumption requires perfect balancing (in the

frequency-weighted average of potential outcomes) of three fundamentally different types of

encounters: “assault,” “jaywalking,” and (if they exist) anti-white stops. Perturbations in

either (i) potential force rates or (ii) strata proportions would cause the assumption to fail.

Figure 4 displays three hypothetical scenarios where both sets of numeric values are

precisely tailored to satisfy the Proposition 1 knife-edge balancing condition. For example,

panel (c) considers the plausible case where there are no anti-white stops. In this setting,
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rearranging terms in Proposition 1 reveals that subset ignorability requires that officers

be equally violent in “assaults” and “jaywalking” encounters (i.e., have the same average

potential outcomes).

To convey concepts with a more specific illustration, panel (b) depicts a world in which

2
7

of potential detainments are always-stop “assaults,” 4
7

are anti-minority “jaywalking” en-

counters in which only minority civilians would be detained, and 1
7

are anti-white encounters

(whatever those may be). Thus, the probability fractions in the left-hand side of Propo-

sition 1 (minority stops) are 2/7
2/7+4/7

= 1
3

(non-discriminatory) and 4/7
2/7+4/7

= 2
3

(discrim-

inatory), respectively; the right-hand-side fractions (white stops) are 2/7
2/7+1/7

= 2
3

(non-

discriminatory) and 1/7
2/7+1/7

= 1
3

(discriminatory). In this case, Proposition 1 holds if and

only if the “leniency” of officer force in anti-minority stops, defined as leniencyminority =

E[Yi(d, 1)|always stop] − E[Yi(d, 1)|anti-min. stop], is exactly one half of leniencywhite =

E[Yi(d, 1)|always stop]− E[Yi(d, 1)|anti-white stop].7

In Figure 4, to find cases where subset ignorability was not violated, we carefully hand-

tuned principal strata sizes and potential force rates until the just-so condition of Proposi-

tion 1 was satisfied. Thus, in these unlikely scenarios, selection bias happens to sum to zero.

But recall that the analyst has no direct knowledge of, much less control over, precise values

for any of these parameters. Critically, even gold-standard experimental designs that ran-

domize treatment at the start of police encounters cannot ensure this knife-edge relationship

will hold: standard ignorability assumptions merely require groups to be comparable given

as-if random treatment assignment, whereas here, groups must remain comparable despite

responding to treatment differently. Moreover, because the frequencies of occurrence and the

average potential force are almost always different across principal strata, this condition is

7Plugging in the above probability fractions, Proposition 1 reduces to

E[Yi(d, 1)|always stop] · 1
3

+ E[Yi(d, 1)|anti-min. stop] · 2
3

= E[Yi(d, 1)|always stop] · 2
3

+

E[Yi(d, 1)|anti-white stop] · 1
3
. Subtracting E[Yi(d, 1)|always stop] from both sides yields

leniencyminority · 23 = leniencywhite · 13 .
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almost never satisfied, in a measure-theoretic sense. Thus, knife-edge balancing is essentially

a blind hope the analyst expresses about the world.

To examine the impact of post-treatment selection bias in a more general way, Figure 5

examines a fuller range of conditions. These scenarios extend the case of Figure 4(b) while

varying key parameters to illustrate the delicacy of the subset ignorability assumption.8 The

two panels display the infinitesimally narrow surface on which subset ignorability holds and

shows how post-treatment selection bias varies as a function of two parameters: the ratio

of anti-minority to anti-white stops, and the ratio of force across the same two principal

strata. The top panel shows that as we depart from the measure-zero set of conditions in

which subset ignorability holds—the white curve—analysts employing standard regression

approaches will either over- or underestimate racial bias in policing, dubiously inferring anti-

white bias in some cases. The steep slopes on the surface displayed in the bottom panel show

that the magnitude of this statistical bias grows rapidly as we depart from the conditions

necessary to satisfy subset ignorability.

Proof. A detailed derivation is given in Appendix A. Using the definition Mi = Mi(Di) and

treatment ignorability, it is easy to see that the no-selection-bias assumption implies (⇐⇒ )

8In these hypothetical scenarios, following Figure 4(b), always-stop encounters represent 2
7

of all potential detainments—i.e. encounters in which either Mi(0) = 1 or Mi(1) = 1. We also

set E[Y (1, 1)|always stop] = 1, E[Y (0, 1)|always stop] = 0.7, E[Y (1, 1)|anti-white stop] =

0.5, and E[Y (0, 1)|anti-white stop] = 0.35, again following Figure 4(b). These key parameters

are (i) relative sizes of the anti-minority stop and anti-white stop strata, Pr(anti-min. stop)
Pr(anti-white stop)

; and

(ii) relative force rates in these strata, E[Yi(d,1)|anti-min. stop]
E[Yi(d,1)|anti-white stop]

. Thus, Figure 5 contains the

unbiased Figure 4(b) scenario as a special case, but generalizes it to show how bias rapidly

increases in magnitude—even in this idealized setting—as either parameter is varied. The

patterns depicted in Figure 5 are not specific to this setting. To demonstrate this, we provide

code allowing analysts to input any combination of parameters that they find reasonable,

then examine the bias that results from any deviation from subset ignorability.
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Yi(d, 1) ⊥⊥ Di | Mi(Di) = 1

⇐⇒ E[Yi(d, 1) | Mi(Di) = 1] = E[Yi(d, 1) | Di = 0, Mi(Di) = 1]

⇐⇒ E[Yi(d, 1) | Mi(1) = 1] = E[Yi(d, 1) | Di = 0, Mi(0) = 1]

⇐⇒ E[Yi(d, 1) | Mi(1) = 1] = E[Yi(d, 1) | Mi(0) = 1]

⇐⇒ E [Yi(d, 1) | (Mi(0) = 1 ∧Mi(1) = 1) ∨ (Mi(0) = 0 ∧Mi(1) = 1)]

= E [Yi(d, 1) | (Mi(0) = 1 ∧Mi(1) = 1) ∨ (Mi(0) = 1 ∧Mi(1) = 0)]

⇐⇒ E[Yi(d, stop) | always stop OR anti-min. stop]

= E[Yi(d, stop) | always stop OR anti-white stop],

where ∧ (∨) denotes “and” (“or”), and the equivalence between independence and equal

expectations is due to binary Yi. Proposition 1 follows immediately.
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Figure 4: What would it take for subset ignorability to hold in experiments? Three
hypothetical scenarios. Each panel presents a hypothetical composition of police stops.
Subset ignorability is true if and only if the described knife-edge condition holds between all
cells connected by lines. The first line in each cell gives Pr( strata |Mi(0) = 1 or Mi(1) = 1 );
the second and third give E[ Y (d, 1) | strata ].

Stop if white? Yes Stop if white? No

assault: 1/3 potential stops jaywalk: 1/3 potential stops

Yes if minority, 100% force if minority, 25% force

if white, 50% force if white, 10% force

anti-white: 1/3 potential stops

No if minority, 25% force

if white, 10% force
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3

jaywalking, 1
3

anti-white
⇒ minority stops are 1

2
assaults, 1

2
jaywalking; white are 1

2
assaults, 1

2
anti-white

To satisfy subset ignorability: requires exact equality between jaywalking and anti-white
encounters (whatever those may be) in terms of potential officer force.

Stop if white? Yes Stop if white? No

assault: 2/7 potential stops jaywalk: 4/7 potential stops

Yes if minority, 100% force if minority, 75% force

if white, 70% force if white, 52.5% force

anti-white: 1/7 potential stops

No if minority, 50% force

if white, 35% force
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3
assaults, 2

3
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3
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3
anti-white

To satisfy subset ignorability: requires the difference between assaults and anti-white
encounters (whatever those may be), in terms of potential force, to be exactly double the
difference between assault and jaywalking.

Stop if white? Yes Stop if white? No

assault: 1/2 potential stops jaywalk: 1/2 potential stops

Yes if minority, 100% force if minority, 100% force

if white, 50% force if white, 50% force

anti-white: nonexistent

No if minority, NA

if white, NA
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Scenario: All potential detainments are 1
2

assaults, 1
2

jaywalking
⇒ minority stops are 1

2
assaults, 1

2
jaywalking; white are all assaults

To satisfy subset ignorability: requires that there is absolutely no difference between
assaults and jaywalking in terms of potential officer force.



Figure 5: Precise balancing is required to achieve accidental bias cancellation. The
figures display hypothetical scenarios illustrating the implicit assumption that analysts make
when using näıve approaches to estimate the CDEM=1—that the relative sizes and relative
force rates of anti-minority and anti-white stops will exactly balance, per Proposition 1. In
both panels, the x axes represent relative size: the ratio of the numbers of anti-minority
stops, versus anti-white stops. The y axes represent relative force: the ratio of potential
force rates in anti-minority stops, versus anti-white stops. In the top panel, the white curve
indicates the narrow slice of scenarios in which subset ignorability would be satisfied and the
näıve approach is unbiased. In the lower red regions, the näıve approach is negatively biased,
underestimating anti-minority discrimination. The dark red region indicates when this bias
is so strong that it leads to a sign error (i.e., on average, analysts erroneously conclude that
police are biased against white civilians). In the lower panel, the z axis depicts how post-
treatment selection bias rapidly grows in magnitude as conditions depart from the subset
ignorability knife-edge requirement.



3.2 A Note on Accidental Cancellation in Nonparametric Causal

Inference

The knife-edge condition of Proposition 1 (and the condition of Proposition 2, below) is a

particularly egregious case of what causal inference scholars refer to as “unfaithfulness”—the

notion that in any model space, there will always exist an infinitesimally small sliver of just-so

data-generating processes that happen to possess “extra independence relationships” (Robins

et al., 2003, p. 493) above and beyond those conveyed by the DAG. In their causal inference

textbook, Spirtes, Glymour and Scheines (1993) note, “. . . the Faithfulness Condition can

be thought of as the assumption that conditional independence relations are due to causal

structure rather [than] to accidents of parameter values” (p. 9). It is typically taken for

granted that general nonparametric statements about ranges (e.g. about possible omitted

variable bias in the example below) refer to the broad behavior of faithful distributions,

with the clear understanding that degenerate unfaithful distributions (often, edge cases and

boundaries) can take on specific values within that range.9

To understand the nature of accidental cancellation in a more familiar setting, consider

the following illustration, extending an example by Robins et al. (2003). Suppose that a

true data-generating process has two unobserved confounders, Z
(1)
i = ε

(Z1)
i and Z

(2)
i = ε

(Z2)
i ;

a treatment Xi = α(1)Z
(1)
i + α(2)Z

(2)
i + ε

(X)
i ; an outcome Yi = βXi + γ(1)Z

(1)
i + γ(2)Z

(2)
i +

ε
(Y )
i ; and all i.i.d. errors ε

(∗)
i ∼ N (0, 1). In these circumstances, a typical causal inference

9For example, Knox, Lowe and Mummolo (2020) state at one point that “bias is weakly

negative” (Appendix p. 6) for the CDEM=1 under some assumptions. In this case, the

statement refers to a broad region in the model subspace defined by the relevant assumptions.

“Weakly negative” (i.e., nonpositive) is a statement about the range of the estimator’s bias

for all data-generating processes in that range, and the term “weakly” is a technical caveat

meaning that for specific unfaithful edge cases in this subspace, the bias may in fact be

exactly zero.
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scholar might first assert that to eliminate omitted variable bias, it is necessary to rule out

unobserved confounders Z
(1)
i and Z

(2)
i . The scholar would then state the exact form of the

omitted variable bias that would result if these confounders were not addressed either through

design or statistical adjustment:
γ(1)α(1)

α2
(1)

+α2
(2)

+1
+

γ(2)α(2)

α2
(1)

+α2
(2)

+1
. However, mapped to this setting,

subset ignorability would hold that the analyst need not control for these omitted variables,

but instead can assume that the bias induced by one perfectly offsets the bias induced by

the other, i.e. that γ(1)α(1) = −γ(2)α(2). In Appendix A, we demonstrate a step-by-step

equivalence between this line of argumentation and the argument for subset ignorability.

Such contrived scenarios, in which statistical bias exists but happens to conveniently can-

cel itself out, have been dismissed by leading causal inference scholars for decades because

they are of little practical use. As Robins et al. (2003) states, “Intuitively, it seems ‘un-

likely’. . . [to have] parameters cancelling each other” (p. 496); the premise that analysts will

not generally be so fortunate “is implicit in a variety of statistical practices” (p. 494). The

reason it seems unlikely is because it is well known that these “accidents,” or “cancelling”

data-generating processes, have Lebesgue measure zero in the model space (Spirtes, Glymour

and Scheines, 1993; Meek, 1995). In other words, the probability that nature draws such

a convenient data-generating process from any smooth distribution over possible models is

zero.

Other scholars have noted that unfaithful edge cases for broader nonparametric results (i)

require little effort to produce and (ii) are not particularly helpful in an applied sense. For ex-

ample, Spirtes, Glymour and Scheines (1993) remarks, “While it is easy enough to construct

models that violate. . . Faithfulness, such models rarely occur in contemporary practice, and

when they do, the fact that they have properties that are consequences of unfaithfulness is

taken as an objection to them” (p. 53); “Faithfulness. . . turns out to be the ‘normal’ rela-

tion between probability distributions and causal structures” (p. 56). This is why, in “An

Introduction to Causal Inference,” Scheines (1997) observes that “assuming faithfulness... is

widely embraced by practicing scientists,” though “nevertheless, critics continue to create
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unfaithful cases and display them” (p. 10).

3.3 In Confounded Settings, Subset Ignorability Holds only if Se-

lection Bias Exactly Cancels Omitted Variable Bias

We now turn to the more general case, when treatment ignorability is violated and there

exist baseline, pre-detainment differences between minority and white encounters. This

issue, as Gaebler et al. (2020) notes, is commonplace: “there is little reason to think that

arrest potential outcomes. . . would be independent of an individual’s race” (p. 20) and thus,

“treatment ignorability... is unlikely to hold in our setting for the same reason” (p. 21).

Estimating causal effects in this confounded setting is widely seen as more challenging.

For example, the entirety of Heckman (1998) revolves around the difficulties posed by “unob-

served characteristics for each race” for detecting discrimination. Knox, Lowe and Mummolo

(2020) warns “Our aim. . . is not to assert the plausibility of treatment ignorability, but rather

to clarify that deep problems remain even if this well-known issue is somehow solved” (p.

626). Yet, Gaebler et al. (2020) nonetheless asserts that in spite of confounding and post-

treatment selection, the proposed approach allows analysts to estimate causal effects without

bias. They write, “critically, such information about the first stage,” discrimination in de-

tainment, “is not necessary to estimate the [CDEM=1], which only quantifies discrimination

in the second-stage decision” (p. 21). Rather, “subset ignorability is sufficient to ensure the

[CDEM=1] can be identified from data on the second-stage decisions” (p. 22).

This bold assertion, which stands in direct contradiction to a vast body of work by

causally oriented discrimination scholars (e.g. Heckman and Siegelman, 1993; Heckman,

1998; Heckman and Durlauf, forthcoming), merits close investigation. What, precisely, does

subset ignorability require the analyst to believe? In Proposition 2, we analyze the proposed

method formally, and find that under confounding, subset ignorability is logically equivalent

to an even more challenging knife-edge assumption than that of Proposition 1. To aid

in the interpretation of this knife-edge condition, we introduce Proposition 3, proving that

21



subset ignorability will hold only if omitted variable bias (induced by confounding) is exactly

cancelled out by selection bias (induced by post-treatment conditioning).

Proposition 2. Without treatment ignorability, the subset ignorability assumption is

satisfied if and only if the following knife-edge equality holds:



LHS of Prop. 1, after extracting omitted variable bias (and dropping treatment ignorability)︷ ︸︸ ︷
E[Yi(d, stop) | always stop, white] Pr(always stop|minority)

Pr(always stop|minority)+Pr(anti-min. stop|minority)

+ E[Yi(d, stop) | anti-min. stop, minority] Pr(anti-min. stop|minority)
Pr(always stop|minority)+Pr(anti-min. stop|minority)



−



RHS of Prop. 1 (dropping treatment ignorability)︷ ︸︸ ︷
E[Yi(d, stop) | always stop,white] Pr(always stop|white)

Pr(always stop|white)+Pr(anti-white stop|white)

+ E[Yi(d, stop) | anti-white stop,white] Pr(anti-white stop|white)
Pr(always stop|white)+Pr(anti-white stop|white)


= −


newly introduced omitted variable bias: minority and white always-stops are now non-comparable︷ ︸︸ ︷(
E[Yi(d, stop) | always stop, minority]− E[Yi(d, stop) | always stop, white]

)
× Pr(always stop|minority)

Pr(always stop|minority)+Pr(anti-min. stop|minority)


(a) Previously non-comparable expectations in Prop. 1 because they refer to

differing principal strata, now further confounded by unobserved differences

in minority & white encounter characteristics

(b) Previously comparable expectations in Prop. 1 that are now only comparable

(i.e., have the same conditioning set) after first extracting omitted variable bias

(unobserved gaps in potential force between minority & white always-stops,

moved to the right-hand side)

(c) Previously non-comparable proportions in Prop. 1 due to differing post-treatment

selection criteria for white & minority encounters, now additionally confounded

by unobserved differences in minority & white encounter-type frequencies
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Proposition 3. The subset ignorability assumption is falsified unless post-treatment bias

is precisely equal in magnitude and opposite in sign to omitted variable bias.

Discussion. Proposition 2 requires the difference between the first two terms (closely resem-

bling the terms in Proposition 1, relating to post-treatment selection) to be exactly equal in

magnitude and opposite in sign to the third term (relating to differences in the nature of mi-

nority and white always stops). The key difference between Proposition 1 and Proposition 2

is that in the former, because treatment is as-if random, minority always-stop encounters

(“assaults”) are directly comparable to white “assaults.” As a result, the third term is zero,

and so the Proposition 1 condition requires the first two terms to be identical to ensure that

their difference is zero.

To see the roots of omitted variable bias more clearly, examine the following equality,

which is logically equivalent to (merely an algebraic manipulation of) the following restate-

ment of subset ignorability: E[Yi(d, 1) | Di = 1, Mi(1) = 1] = E[Yi(d, 1) | Di = 0, Mi(0) =

1].

︷ ︸︸ ︷
E[Yi(d, stop) | always stop, minority] Pr(always stop|minority)

Pr(always stop|minority)+Pr(anti-min. stop|minority)

+ E[Yi(d, stop) | anti-min. stop, minority] Pr(anti-min. stop|minority)
Pr(always stop|minority)+Pr(anti-min. stop|minority)

=
︷ ︸︸ ︷
E[Yi(d, stop) | always stop,white] Pr(always stop|white)

Pr(always stop|white)+Pr(anti-white stop|white)

+ E[Yi(d, stop) | anti-white stop,white] Pr(anti-white stop|white)
Pr(always stop|white)+Pr(anti-white stop|white)

This statement is equivalent to Proposition 1 after dropping treatment ignorability. Above,

the two terms marked with braces are non-comparable due to confounding: omitted variables

mean that white and minority “assault” (always-stop) encounters have different average

potential outcomes. To render them comparable, we must first account for the difference

in baselines, E[Yi(d, stop) | always stop,minority]−E[Yi(d, stop) | always stop,white]. Only

after extracting this term (forming the right-hand side of Proposition 2, the source of the

omitted variable bias characterized in Proposition 3) will the resulting terms, marked (b) in

the proposition, refer to comparable groups as before. The remaining left-hand side closely
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resembles Proposition 1, but with two additional complications. First, in as-if-experimental

conditions, analysts could at least deduce that “jaywalking” type encounters were equally

common in minority and white encounters, if not in the selected dataset observed by analysts.

Without treatment ignorability, however, white encounters may involve differing amounts

of “jaywalking,” “assault,” etc. (i.e., different allocations to principal strata). The affected

terms in Proposition 2 are marked (c). And second, in as-if-experimental conditions, analysts

using selected data are comparing generic “jaywalking” encounters to, e.g. generic “assault”

encounters. These groups were already non-comparable due to potentially vast differences

between principal strata. Without treatment ignorability, however, analysts must now defend

an even more specific knife-edge assumption about the peculiar white “assault” encounters

and how these relate to peculiar minority “jaywalking” encounters. These terms are marked

(a).

The proof of Proposition 2, which consists of two algebraic manipulations, is straightfor-

ward; interested readers are referred to footnote 10 of Appendix A. Proposition 3 clarifies

the interpretation of Proposition 2 further, providing a decomposition of total bias into

post-treatment bias (PTB) and a remainder that we show is easily interpretable as omitted

variable bias (OVB). We then show that the subset ignorability assumption implicitly re-

quires analysts to also assume PTB = −OVB; if PTB 6= −OVB, then subset ignorability is

guaranteed to be false. However, we caution that when treatment is confounded, the subset

ignorability assumption is even stronger than this “accidental cancellation of bias” assump-

tion. Even if analysts could somehow identify cases where omitted-variable bias happened

to perfectly cancel out post-treatment bias, this would not be sufficient to guarantee the

subset ignorability assumption holds. The proof of Proposition 3 is given in Appendix B.
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4 Discussion

The use of traditional regression-based approaches to study discrimination in policing re-

mains widespread. For decades, researchers have applied these workhorse techniques to

police administrative datasets, drawing conclusions about patterns of police behavior that

in turn form the basis of real-world reform recommendations—which are increasingly relied

upon as policy-makers seek opportunities for meaningful change. The recent formalization

of the key identifying assumption undergirding this common approach, subset ignorability,

offers an opportunity to rigorously assess the reliability of this literature. In examining the

statistical underpinnings of this work, our formal analysis reveals that much of this literature

rests on implicit, difficult-to-defend assumptions about exact balancing between the disparate

types of minority and white encounters that appear in police data. We show that serious

issues arise when analysts ignore the process by which police-civilian encounters result in

detainment and subsequent police actions, like officers’ use of force. The core problem is that

discrimination in detainment can lead to minority stops in scenarios where white civilians

would be allowed to pass without comment—and vice versa, to the extent that anti-white

discrimination exists in detainment. This non-comparability of minority and white detain-

ment records produces potentially large statistical bias, except in highly implausible just-so

scenarios that analysts cannot verify.

The study of racial bias in policing faces severe challenges even beyond those examined

here. In addition to the inherently selective nature of detainment records, the nature of

police reports also means that analysts also only see a temporally limited slice of police-

civilian encounters: the portion beginning with actions triggering a reporting requirement.

Because racial bias may well influence officers’ decisions in both dimensions, as well as the

accuracy of their reporting, analysts must not only contend with the formidable obstacle of

omitted variable bias, but also with vast additional obstacles presented by various forms of

post-treatment selection, mismeasurement, and purposeful misrepresentation or fabrication

(Lee et al., 2017; Friberg et al., 2019; Gay, 2020).
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Despite the familiarity of these issues to methodologists and causal inference scholars,

applied discrimination researchers have only recently begun to tackle them in earnest. In

addition to the bounding approach offered in Knox, Lowe and Mummolo (2020), recent work

by Zhao et al. (2020) thoroughly examines a range of discrimination estimands and shows

it may be difficult to extrapolate from the ATEM=1 and ATTM=1 to the ATE. To address

this issue, it develops an approach to estimate causal risk ratios that sidestep problems re-

lating to the unknown magnitude of Pr(Mi = 1). But much work still opts to ignore these

challenges. If researchers are to uncover an honest portrait of racial bias in policing, the im-

plausible assumptions underlying vast swaths of the literature must be abandoned. Policing

data is generated via a complex, multi-stage process that raises unusual threats to causal

inference. Given this indisputable property, science is better served by cautious bounding

approaches that acknowledge the limitations of police data, or develop careful research de-

signs to avoid these sources of statistical bias from the start. This will require continued

innovation in statistical analysis and data collection. While daunting, these challenges are

not insurmountable. But simply ignoring them for the sake of expediency will only serve to

distort estimates of the severity of this pressing social problem.
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A Detailed Proofs of Propositions 1 & 2

Our proof of the näıve estimator’s bias for the CDEM=1 builds on Appendix A.3 of Knox,

Lowe and Mummolo (2020). In our running analogy between selection bias and omitted

variable bias, the derivation below is analogous to the general omitted-variable-bias formula

of Section 3.2,
γ(1)α(1)

α2
(1)

+α2
(2)

+1
+

γ(2)α(2)

α2
(1)

+α2
(2)

+1
. In as-if experimental settings, invoking subset ig-

norability is equivalent to assuming that there exists no selection bias, i.e. that the näıve

regression recovers the CDEM=1. The direct analogy in Section 3.2 would be the assumption

that a regression of Yi on Xi will recover the causal quantity of interest, β—i.e., that there

is no omitted variable bias. Though this “no-omitted-variable-bias assumption” is compact

and easy to state, formally deriving the logical implications reveals its implausibility. For

there to be no omitted variable bias in the presence of these unmeasured confounders, it

must be precisely true that γ(1)α(1) = −γ(2)α(2), a condition that only holds along an in-

finitesimally narrow region in the model space of all possible γ(1), α(1), γ(2), and α(2) values.

If these parameters were randomly drawn from any smooth distribution, there would be zero

probability of the no-omitted-variable-bias assumption holding.

This implausible condition is directly analogous to the knife-edge balancing condition

presented in Proposition 1, the logical implication of the subset ignorability assumption.

Much like the γ(1)α(1) = −γ(2)α(2) condition, the Proposition 1 conditions are merely a

special case that follows from the more general bias derivation. We now reexamine that

derivation in depth.

We follow Appendix A.3 of Knox, Lowe and Mummolo (2020), which derives the bias of

the näıve estimator when targeting the CDEM=1,x, the conditional analog of the CDEM=1 for

the subset of encounters with Xi = x. (For clarity of exposition, we will implicitly condition

on Xi = x throughout.) The paper states, “The derivation is almost identical to that of the

ATEM=1,x [Appendix A.1], differing only in that all individuals are held at Mi = 1 instead

of. . . vary[ing] with civilian race, Mi(Di).”

1



Literally,

E[∆̂]− CDEM=1 =

E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

+E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 0]

Pr(Mi(0) = 0|Di = 1,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

−E[Yi(1, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(1) = 1|Di = 0,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

−E[Yi(1, 1)|Di = 0,Mi(1) = 0,Mi(0) = 1]

Pr(Mi(1) = 0|Di = 0,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)



(α)

−E[Yi(0, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(1) = 1|Di = 0,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

−E[Yi(0, 1)|Di = 0,Mi(1) = 0,Mi(0) = 1]

Pr(Mi(1) = 0|Di = 0,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

+E[Yi(0, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

+E[Yi(0, 1)|Di = 1,Mi(1) = 1,Mi(0) = 0]

Pr(Mi(0) = 0|Di = 1,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)



(ω)

per Knox, Lowe and Mummolo (2020) Appendix pp. 1–2 and p. 6. It immediately follows

that (i) the knife-edge condition of Proposition 2 achieves unbiasedness in general, and (ii)

the knife-edge condition of Proposition 1 achieves unbiasedness if treatment ignorability is

satisfied. To verify, observe that the first four terms are proportional to

α ∝ E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1] Pr(Mi(0) = 1|Di = 1,Mi(1) = 1)

+ E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 0] Pr(Mi(0) = 0|Di = 1,Mi(1) = 1)

− E[Yi(1, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1] Pr(Mi(1) = 1|Di = 0,Mi(0) = 1)

− E[Yi(1, 1)|Di = 0,Mi(1) = 0,Mi(0) = 1] Pr(Mi(1) = 0|Di = 0,Mi(0) = 1). (3)

2



Rearranging terms, it can be seen that Proposition 2 (plugging d = 1 into the proposition)

is logically equivalent to the statement that α = 0.10 If treatment ignorability holds, this

reduces to

α ∝ E[Yi(1, 1)|Mi(1) = 1,Mi(0) = 1] Pr(Mi(0) = 1|Mi(1) = 1)

+ E[Yi(1, 1)|Mi(1) = 1,Mi(0) = 0] Pr(Mi(0) = 0|Mi(1) = 1)

− E[Yi(1, 1)|Mi(1) = 1,Mi(0) = 1] Pr(Mi(1) = 1|Mi(0) = 1)

− E[Yi(1, 1)|Mi(1) = 0,Mi(0) = 1] Pr(Mi(1) = 0|Mi(0) = 1), (4)

and the Proposition 1 knife-edge balancing statement (again plugging d = 1 into Proposi-

tion 1) is logically equivalent to the statement that α = 0. To reiterate, these two statements

are mathematically identical ; to see this, set α = 0 in Equation 4, move the latter two terms

to the left-hand side, and expand the conditional probabilities. Similarly, when setting d = 0,

the Proposition 1 and 2 statements are logically equivalent to ω = 0.

More broadly, subset ignorability is logically equivalent to the assumption that α = ω =

0. As Knox, Lowe and Mummolo (2020) showed, the näıve estimator is unbiased for the

CDEM=1 when this holds and treatment ignorability is satisfied.

Knox, Lowe and Mummolo (2020) does not remark on the point that exact cancellation of

opposing terms can produce zero bias. Such observations are simultaneously (i) applicable

in virtually every formal analysis of causal identification, (ii) almost never satisfied, in a

measure-theoretic sense, and (iii) therefore unproductive for applied policing scholars. (For

the same reason, Knox, Lowe and Mummolo (2020) also did not remark on the fact that

bias can be zero when α = −ω.)

10 Specifically, add E[Yi(1, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1] Pr(Mi(0) = 1|Di = 1,Mi(1) =

1) to both sides, then subtract E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1] Pr(Mi(0) = 1|Di =

1,Mi(1) = 1) from both sides.
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B Proof that Subset Ignorability Can Only Hold if

Post-treatment Bias is Equal in Magnitude and Op-

posite in Sign to Omitted Variable Bias

First, define PTB as the bias that arises from post-treatment selection alone, i.e. when

treatment ignorability is satisfied. Applying this property to the first equation in Appendix A

and simplifying comparable terms, we obtain

PTB =

E[Yi(1, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1][
Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)− Pr(Mi(1) = 1|Di = 0,Mi(Di) = 1)

]
Pr(Di = 0|Mi(Di) = 1)

+E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 0]

Pr(Mi(0) = 0|Di = 1,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

−E[Yi(1, 1)|Di = 0,Mi(1) = 0,Mi(0) = 1]

Pr(Mi(1) = 0|Di = 0,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)



(αPTB)

−E[Yi(0, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1][
Pr(Mi(1) = 1|Di = 0,Mi(Di) = 1)− Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)

]
Pr(Di = 1|Mi(Di) = 1)

−E[Yi(0, 1)|Di = 0,Mi(1) = 0,Mi(0) = 1]

Pr(Mi(1) = 0|Di = 0,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

+E[Yi(0, 1)|Di = 1,Mi(1) = 1,Mi(0) = 0]

Pr(Mi(0) = 0|Di = 1,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1).



(ωPTB)
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Next, recall that the bias arising when treatment is nonignorable is

Total Bias =

E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

+E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 0]

Pr(Mi(0) = 0|Di = 1,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

−E[Yi(1, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(1) = 1|Di = 0,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

−E[Yi(1, 1)|Di = 0,Mi(1) = 0,Mi(0) = 1]

Pr(Mi(1) = 0|Di = 0,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)



(α)

−E[Yi(0, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(1) = 1|Di = 0,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

−E[Yi(0, 1)|Di = 0,Mi(1) = 0,Mi(0) = 1]

Pr(Mi(1) = 0|Di = 0,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

+E[Yi(0, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1]

Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

+E[Yi(0, 1)|Di = 1,Mi(1) = 1,Mi(0) = 0]

Pr(Mi(0) = 0|Di = 1,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1).



(ω)

We now proceed to decompose the total bias:

Total Bias = PTB + additional bias

Total Bias− PTB ={
E[Yi(1, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1]− E[Yi(1, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1]

}
Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)Pr(Di = 0|Mi(Di) = 1)

 α− αPTB

= αOVB

+
{
E[Yi(0, 1)|Di = 1,Mi(1) = 1,Mi(0) = 1]− E[Yi(0, 1)|Di = 0,Mi(1) = 1,Mi(0) = 1]

}
Pr(Mi(0) = 1|Di = 1,Mi(Di) = 1)Pr(Di = 1|Mi(Di) = 1)

 ω − ωPTB

= ωOVB
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so that Total Bias = α + ω and PTB = αPTB + ωPTB. Finally, notice that the remaining

terms take the form

E[ potential outcome | Di = 1, subset ]− E[ potential outcome | Di = 0, subset ],

which is the classic structure of omitted variable bias rendering average potential outcomes

within the treated subset (Di = 1) non-comparable to average potential outcomes within the

control subset (Di = 0). The severity of this bias within the treated and control subgroups

is then weighted and averaged to yield what is straightforwardly interpretable as an overall

omitted variable bias. Thus, the bias decomposition can be expressed

Total Bias = PTB + OVB

where OVB = αOVB +ωOVB. As we show in Proposition 2 and Appendix A, the subset ignorability

assumption is logically equivalent to the assumption that α = ω = 0. This directly implies αPTB =

−αOVB and ωPTB = −ωOVB, which in turn implies PTB = −OVB. Thus, for subset ignorability to

not be falsified, post-treatment bias must be precisely equal in magnitude and opposite in sign to

omitted variable bias. However, because it is possible that αPTB +ωPTB = −αOVB−ωPTB without

αPTB = −αOVB and ωPTB = −ωOVB, exactly cancelling bias is merely necessary, but not sufficient,

for the subset ignorability assumption to hold.
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