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How do we measure racial bias in policing?

Eric Garner, 2014
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I Causal question.

Focus on traditional omitted variable bias.
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Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database). We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime. If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database). We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime. If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database). We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime. If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database).

We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime. If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database). We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime. If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database). We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime.

If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database). We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime. If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Intuition for the problem
I Goal: estimate effect of civilian race on police use of force

I Suppose perfect as-if experimental conditions: a set of police
encounters (i.e. sightings) identical but for race of civilians

I Suppose racial bias leads police to stop white civilians if
engaged in serious crime (e.g. bank robbery), stop black
civilians regardless of behavior

I Now throw away all data on civilians police observe but do not
stop (e.g. the NYPD “Stop, Question and Frisk” (SQF)
database). We’ve just ruined our experiment!

I Comparing white bank robbers to black civilians committing
no crime. If we then found no disparity in rates of force
against black/white civilians, that should be alarming!

I Current literature reads this result as “no evidence of racial
bias in the use of force”



Estimating racial bias with police data

1. Racial bias likely affects who police choose to investigate →
which encounters appear in police data

2. Police administrative data are inherently post-treatment

3. Results statistically biased; bias often can’t be “controlled
away”

4. Bias has a precise form, can derive informative bounds on the
true causal effect of civilian race on police behavior

5. Prior work ignoring this feature substantially underestimates
racial bias in use of force (Fryer, 2019)

6. New research designs to avoid this pitfall
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Defining the Statistical Problem



A causal mediation framework
I Unit of analysis: police-civilian encounters:

I “Encounter” = sighting of individual by police officer

I Counterfactual: substitution of individual of differing race into
police-civilian encounter, holding circumstance and civilian
behavior fixed

I Treatment (civilian is racial minority) Di ∈ {0,1}

I Outcome (use of force) Yi ∈ {0,1}

I Mediator (being stopped by police) Mi ∈ {0,1}

I Racial bias in police stops (Di → Mi )
(e.g. Gelman, Fagan & Kiss 2007; Glaser 2014; Lerman &
Weaver 2014; Goel, Rao & Shroff 2016)
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A more complete theory
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e.g. officer suspicion, emotional state. (Credible?)
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Potential outcomes with mediation

Normally we consider Y (d) ∈ {Y (1),Y (0)}; potential force
given race (treatment)

Instead consider Y (d ,M(d))

Y (1, 1) = potential use of force if minority civilian stopped
Y (1, 0) = potential use of force if minority civilian not stopped
Y (0, 1) = potential use of force if white civilian stopped
Y (0, 0) = potential use of force if white civilian not stopped
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Formalizing the Missing Data
Problem



Solution: principal stratification

I If D → M, four types of police-civilian encounters:

Mi (0) = 1 Mi (0) = 0

Mi (1) = 1 “always stop” stop if black
(serious crime) (jaywalking)

Mi (1) = 0 stop if white “never stop”
? (inconspicuous)

What do we get to see in police data?
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Encounters (sightings) belong to one of four principal strata
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Within each, civilian is treated (black) or not (white)
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Four potential outcomes we may need to estimate
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Very few potential outcomes appear in police data
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Causal Quantities of Interest



Which causal effect?

I Prior work does not name specific causal estimands

I Without naming an estimand, we can’t consider identifying
assumptions or evaluate validity of an analysis

I There are many causal effects:

I Average Treatment Effect (ATE ) in the population

I Effect among those who interact with police (ATEM=1)

I Effect among minorities who interact with police (ATTM=1)
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Causal estimands

TE = E[Yi (1,Mi (1))]− E[Yi (0,Mi (0))]

i Stratum Di Mi Mi (0) Mi (1) Yi (1, 1) Yi (1, 0) Yi (0, 1) Yi (0, 0) ATE ATEM=1 ATTM=1 CDEM=1
1 Always-Stop 1 1 1 1 1 0 1 0 0 0 0 0
2 Always-Stop 0 1 1 1 1 0 1 0 0 0 0
3 Racial Stop 1 1 0 1 1 0 1 0 1 1 1 0
4 Never-Stop 0 0 0 0 1 0 0 0 0



Average Treatment Effect

ATE = E[Yi (1,Mi (1))− Yi (0,Mi (0))]

i Stratum Di Mi Mi (0) Mi (1) Yi (1, 1) Yi (1, 0) Yi (0, 1) Yi (0, 0) ATE ATEM=1 ATTM=1 CDEM=1
1 Always-Stop 1 1 1 1 1 0 1 0 0 0 0 0
2 Always-Stop 0 1 1 1 1 0 1 0 0 0 0
3 Racial Stop 1 1 0 1 1 0 1 0 1 1 1 0
4 Never-Stop 0 0 0 0 1 0 0 0 0



Average Treatment Effect Among the Stopped

ATEM=1 = E[Yi (1,Mi (1))− Yi (0,Mi (0))|Mi = 1]
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Assumption 1: Mandatory reporting

Yi (d , 0) = 0

I If encounter not in the data, no force was applied

I Highly plausible for lethal/severe force
I Increasingly plausible for sub-lethal force given

civilian oversight boards, cell phone cameras
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Assumption 3: Relative non-severity of racial stops

E [Yi (d ,m)|Di = d ′,Mi (1) = 1,Mi (0) = 1] ≥
E[Yi (d ,m)|Di = d ′,Mi (1) = 1,Mi (0) = 0]

I Level of force applied in always-stop encounters
(serious crimes) ≥ level applied in racial stop
encounters on average
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I No omitted variables with respect to mediator or
outcome

I More plausible in recent years (data on lat/lon,
time, officer and suspect features, etc.)
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Given assumptions 1-4, can we recover a causal quantity?

I Consider the naïve estimator:

∆̂ = Ê[Yi |Di = 1,Mi = 1]− Ê[Yi |Di = 0,Mi = 1]

I Target the ATEM=1 and ATTM=1
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Bias in the naïve estimator for ATTM=1

What about ATTM=1, the total effect among stopped black
civilians?

E[∆̂]− ATTM=1

= −E[Yi (0, 1)|Mi (1) = 1,Mi (0) = 1]Pr(Mi (0) = 0|Mi (1) = 1)

Again, bias remains unless there are no racial stops, or no use of
force against whites (empirically falsified).
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I even with a perfect set of pre-treatment control variables

Can we estimate racial bias with police administrative data?
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Bounds and bias correction

I Using precise form of bias, we can construct nonparametric
sharp bounds on true effects



Bounding the true ATEM=1

I Bias can be re-written in terms of all things that can be
directly estimated from data except two:

1. ρ = Pr(Mi (0) = 0|Di = 1,Mi = 1): share of minority stops
due to race (unknown)

2. θ = E[Y (1, 1)|Di = 1,Mi (1) = 1,Mi (0) = 0], violence rate
among racially stopped minorities

I If we knew the joint distribution
Pr(Y (1, 1),Mi (0) = 0|Di = 1,Mi (1) = 1) = Pr(A,B), we
could then back out θ = P(A|B), the conditional probability

I θ = P(A|B) = Pr(A,B)
Pr(B)

= Pr(A,B)
ρ

I We don’t, but we can place Fréchet bounds on Pr(A,B)
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among racially stopped minorities

I If we knew the joint distribution
Pr(Y (1, 1),Mi (0) = 0|Di = 1,Mi (1) = 1) = Pr(A,B), we
could then back out θ = P(A|B), the conditional probability

I θ = P(A|B) = Pr(A,B)
Pr(B)

= Pr(A,B)
ρ

I We don’t, but we can place Fréchet bounds on Pr(A,B)
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distribution Pr(A,B) is bounded by:

max{0,Pr(A) + Pr(B)− 1} ≤ P(A,B) ≤ min{Pr(A),Pr(B)}
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Deriving sharp bounds for true ATEM=1

I If we can bound Pr(A,B) we can also bound θ = Pr(A,B)
ρ and

plug the bounds back into the bias term

I If ATEM=1 = E[∆̂] + bias, then subbing in Fréchet bounds
for θ into the bias term =⇒

E[∆̂] + biasLB ≤ ATEM=1 ≤ E[∆̂] + bias
UB
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Sharp nonparametric bounds

Given ρ, bounds for the true ATEM=1 are given by:

E[∆̂] + ρ E[Yi |Di = 0,Mi = 1] (1− Pr(Di = 0|Mi = 1))

≤ ATEM=1 ≤

E[∆̂] +
ρ

1− ρ
(E[Yi |Di = 1,Mi = 1]− K ) Pr(Di = 0|Mi = 1)

+ρ E[Yi |Di = 0,Mi = 1] (1− Pr(Di = 0|Mi = 1)).

where
K = max

{
0, 1 +

1
ρ
E[Yi |Di = 1,Mi = 1]− 1

ρ

}
.

The ATTM=1 must similarly satisfy:

ATTM=1 = E[∆̂] + ρ E[Yi |Di = 0,Mi = 1]
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Fryer (2019)

I Police-civilian interactions (e.g. Stop and Frisk, arrest records,
summaries of shootings)

I Logistic regressions of force measures on race dummies,
controls for circumstance, suspect features, officer features

I Conclusions:

I Some racial bias in sub-lethal force

I No bias in lethal force

I Problem: No data on those police observe but do not stop



Fryer (2019)

I Police-civilian interactions (e.g. Stop and Frisk, arrest records,
summaries of shootings)

I Logistic regressions of force measures on race dummies,
controls for circumstance, suspect features, officer features

I Conclusions:

I Some racial bias in sub-lethal force

I No bias in lethal force

I Problem: No data on those police observe but do not stop



Fryer (2019)

I Police-civilian interactions (e.g. Stop and Frisk, arrest records,
summaries of shootings)

I Logistic regressions of force measures on race dummies,
controls for circumstance, suspect features, officer features

I Conclusions:

I Some racial bias in sub-lethal force

I No bias in lethal force

I Problem: No data on those police observe but do not stop



Fryer (2019)

I Police-civilian interactions (e.g. Stop and Frisk, arrest records,
summaries of shootings)

I Logistic regressions of force measures on race dummies,
controls for circumstance, suspect features, officer features

I Conclusions:

I Some racial bias in sub-lethal force

I No bias in lethal force

I Problem: No data on those police observe but do not stop



Fryer (2019)

I Police-civilian interactions (e.g. Stop and Frisk, arrest records,
summaries of shootings)

I Logistic regressions of force measures on race dummies,
controls for circumstance, suspect features, officer features

I Conclusions:

I Some racial bias in sub-lethal force

I No bias in lethal force

I Problem: No data on those police observe but do not stop



Concern over post-treatment bias



Replication of Fryer (2019)

I Replicate two analyses of sub-lethal force using NYPD’s “Stop,
Question and Frisk” (SQF) data (2003-2013), N ≈ 5 million

I Stipulate to regression model (logit form, assume no omitted
variables)
I Use of any force (at least laying hands on civilian; binary)
I Force thresholds (e.g. at least handcuffs) with seven

categories: laying hands; push to wall; handcuffs; draw
weapon; push to ground; point weapon; baton/pepper spray
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What is ρ?
What is the share of minority stops that would not have happened
if civilians had been white?

I Can be anywhere in [0, 1). If ρ = 0, bias disappears.

I Two prior studies estimate this using data on “Stop, Question
and Frisk” in NYC

I Gelman, Fagan & Kiss (2007) and Goel, Rao and Schroff
(2016)

I Studies take totally different approaches

I Results imply ρ is at least .32 or .34, respectively

I We use ρ =.32 to be conservative
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How can we do better?

I Only partially identified.

Can’t get the population ATE .

I Only way to do better: improved research design
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Option 1:

I Identify situations with race-blind contact with police (e.g.
rules for DUI stops; traffic stops and night; traffic accidents?)



Option 2: Gather data on the non-stopped

I Need data on those police observe but do not stop

I Answer: traffic cameras.
Passive data collection on non-stop encounters.

I Link cars to DMV records, ticket/arrest data

I Still have to contend with omitted variables

I But, plausible to measure most (all?) observable covariates
available to officer when making stop

I No need to condition on being stopped during analysis

I Post-treatment conditioning avoided by design
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Police data mask racially biased policing

I Lots of new/big data on policing → raft of studies estimating
racial bias

I At present, inadequate theory: insufficient attention to role of
race throughout entire process risks severely understating
racial violence

I Risk confusing/misleading the public and policymakers
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Thanks!

Please send feedback to:
dcknox@princeton.edu
wlowe@princeton.edu
jmummolo@princeton.edu


